SUPPLEMENTAL MATERIAL FOR:

"The Asian Summer Monsoon: An Intercomparison of CMIP-5 vs. CMIP-3 Simulations of the 20th Century"

K. R. Sperber, H. Annamalai, I.-S. Kang,
A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou


Author Version of the Published Journal Article
Climate Dynamics Version of the Published Journal Article

Sperber, K. R.; Annamalai, H.; Kang, I.-S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T., 2012, "The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century", Climate Dynamics, DOI: 10.1007/s00382-012-1607-6




Tables 2 and 3

Click on a diagnostic heading (2nd row) to get a .pdf file of the full suite of observed and model figures and/or skill score plot for that diagnostic.

 

Table 2: Skill scores for the June-September climatology and the climatological annual cycle. The results are given for observations, the MMM’s, and for the CMIP5 and CMIP3 models. The observed skill for precipitation is between GPCP and CMAP, and the skill for the 850hPa wind (850hPa) is between ERA40 and JRA25. The model pattern correlations for the precipitation climatology (Pr) are calculated with respect to GPCP precipitation. For the 850hPa wind climatology (850hPa), the model pattern correlations are calculated with respect to ERA40 850hPa wind. For the climatologies the skill is calculated over the region 40oE-160oE, 20oS-50oN. For the time-latitude (T-Lat) climatological annual cycle of monthly rainfall averaged between 70oE-90oE, the model pattern correlations are calculated with respect to GPCP precipitation over the region 10oS-30oN, for May-October (see Section 4.1). For the climatological annual cycle of pentad rainfall, the model pattern correlations are calculated with respect to GPCP precipitation for the pentads of onset, peak, withdrawal, and duration of the monsoon over the region 50oE-180oE, 0o-50oN (see Section 4.2). The categorical skill scores, hit rate and threat score, indicate how well a model represents the spatial domain of the monsoon, where a value = 1 indicates perfect agreement between model and observations. Missing table entries occur for models that did not have available data for analysis. The top five models with the largest skill scores for each diagnostic are highlighted

Table 2

Model

Climatology

Climatological Annual Cycle Rainfall

 

Pr

850hPa

T-Lat

Onset

Peak

Withd

Duration

Hit Rate

Threat

Observations

0.927

0.986

0.887

0.748

0.834

0.830

0.671

0.893

0.744

CMIP5 MMM

0.898

0.976

0.674

0.664

0.786

0.792

0.605

0.844

0.625

CMIP3 MMM

0.865

0.967

0.657

0.510

0.733

0.712

0.380

0.821

0.573

BCC-CSM-1

0.808

0.928

0.338

           

bccr-bcm2.0

0.733

0.933

0.639

           

CanESM2

0.815

0.951

0.552

0.298

0.451

0.543

0.164

0.782

0.517

cgcm3.1 (t47)

0.782

0.935

0.465

0.063

0.476

0.454

0.109

0.766

0.522

cgcm3.1 (t63)

0.796

0.944

0.461

0.155

0.432

0.384

0.154

0.758

0.508

CCSM4

0.849

0.952

0.678

0.581

0.717

0.798

0.570

0.836

0.619

ccsm3

0.748

0.913

0.390

0.394

0.481

0.459

0.346

0.757

0.487

pcm1

0.634

0.793

0.364

           

CNRM-CM5

0.852

0.974

0.567

0.674

0.638

0.750

0.656

0.796

0.513

cnrm-cm3

0.717

0.908

0.763

0.489

0.596

0.633

0.329

0.749

0.437

CSIRO-Mk3.6.0

0.713

0.896

0.232

0.006

0.451

0.729

0.331

0.762

0.497

csiro-mk3.0

0.803

0.889

0.385

0.196

0.461

0.601

0.147

0.790

0.495

csiro-mk3.5

0.796

0.923

0.171

0.287

0.474

0.665

0.350

0.788

0.540

FGOALS-g2

0.766

0.923

0.455

           

FGOALS-s2

0.807

0.916

0.613

0.601

0.596

0.649

0.531

0.812

0.537

fgoals-g1.0

0.690

0.803

0.587

-0.050

0.672

0.785

0.097

0.770

0.460

GFDL-CM3

0.844

0.941

0.742

0.458

0.407

0.546

0.406

0.796

0.532

GFDL-ESM2G

0.821

0.955

0.727

0.370

0.560

0.660

0.328

0.841

0.615

GFDL-ESM2M

0.828

0.958

0.676

0.490

0.714

0.730

0.383

0.824

0.586

gfdl_cm2_0

0.826

0.954

0.673

0.715

0.540

0.624

0.495

0.812

0.559

gfdl_cm2_1

0.843

0.957

0.681

0.453

0.662

0.731

0.485

0.825

0.587

GISS-E2-H

0.631

0.902

0.318

           

GISS-E2-R

0.730

0.912

0.235

           

giss_aom

0.780

0.894

0.282

0.359

0.614

0.540

0.203

0.774

0.457

HadCM3

0.773

0.931

0.550

0.555

0.447

0.519

0.452

0.873

0.675

HadGEM2-CC

0.795

0.927

0.376

0.526

0.659

0.634

0.317

0.777

0.543

HadGEM2-ES

0.800

0.933

0.356

0.562

0.620

0.648

0.367

0.769

0.538

ukmo_hadcm3

0.778

0.932

0.529

           

ukmo_hadgem1

0.798

0.938

0.386

           

ingv-sxg

0.814

0.950

0.629

0.277

0.575

0.724

0.417

0.797

0.516

INMCM4

0.742

0.864

0.561

0.153

0.616

0.649

0.224

0.810

0.560

inmcm3.0

0.619

0.837

0.497

-0.125

0.331

0.592

-0.064

0.795

0.517

IPSL-CM5A-LR

0.797

0.926

0.442

0.399

0.540

0.712

0.482

0.798

0.515

IPSL-CM5A-MR

0.809

0.935

0.501

0.421

0.575

0.769

0.591

0.787

0.501

ipsl-cm4

0.743

0.907

0.214

0.215

0.495

0.634

0.254

0.786

0.468

MIROC-ESM

0.617

0.824

0.518

0.391

0.610

0.666

0.394

0.756

0.434

MIROC-ESM-CHEM

0.642

0.831

0.538

0.518

0.669

0.653

0.423

0.752

0.433

MIROC4h

0.802

0.940

0.573

0.674

0.626

0.766

0.620

0.843

0.611

MIROC5

0.842

0.940

0.778

0.362

0.778

0.851

0.652

0.808

0.531

miroc3.2(hires)

0.761

0.914

0.523

0.483

0.383

0.709

0.568

0.792

0.486

miroc3.2(medres)

0.765

0.919

0.513

0.633

0.402

0.571

0.503

0.744

0.384

MPI-ESM-LR

0.792

0.949

0.664

0.316

0.579

0.652

0.472

0.781

0.535

echam5/mpi-om

0.800

0.942

0.664

0.265

0.412

0.537

0.337

0.800

0.547

miub_echo_g

0.803

0.911

0.522

0.008

0.041

0.368

0.189

0.787

0.507

MRI-CGCM3

0.752

0.886

0.195

0.024

0.619

0.535

-0.014

0.751

0.465

mri-cgcm2.3.2

0.726

0.885

0.538

0.471

0.345

0.550

0.346

0.746

0.473

NorESM1-M

0.848

0.913

0.634

0.558

0.723

0.791

0.565

0.838

0.624

 

 

Table 3: Skill scores for the Indian Monsoon and East Asian Monsoon interannual variability and the boreal summer intraseasonal variability (BSISV). The results are given for observations, the MMM’s, and for the CMIP5 and CMIP3 models. The interannual variations of the ENSO-Monsoon relationship are characterized by (1) the lag 0 correlation between JJAS anomalies of all-India rainfall and NINO3.4 SST (AIR/N3.4). The AIR is for land-only gridpoints over the region 65oE-95oE, 7oN-30oN. The observations are for the anomalies of Rajeevan rainfall vs. HadISST SST for 1961-1999, and (2) the pattern correlations of JJAS precipitation anomalies (Pr) obtained from regression with JJAS anomalies of NINO3.4 SST. The model pattern correlations are calculated with respect to GPCP anomalies that were obtained by regression with the NINO3.4 SST anomalies from the NCEP/NCAR reanalysis (1979-2007). The pattern correlations are calculated over the region 60oE-100oE, 0o-30oN. For observations the skill is between GPCP and CMAP. For the East Asian Monsoon, the negative of the June-August Wang and Fan (1999) zonal wind shear index (WFN, see Section 5.2) is regressed against June-August anomalies of precipitation and 850hPa wind. The model pattern correlations are calculated with respect to GPCP rainfall anomalies and JRA 850hPa wind anomalies that were obtained by regression with the JRA25 WFN. The pattern correlations are calculated over the region 100oE-140oW, 0o-50oN. For observations the skill is between GPCP/JRA25 and CMAP/NCEP-NCAR Reanalysis. For BSISV, the skill is (1) the pattern correlation of June-September 20-100 day bandpass filtered OLR variance between the model (1961-1999) and AVHRR OLR (1979-2006). For observations the skill is for AVHRR OLR for 1979-2006 vs. AVHRR OLR for 1979-1995, and (2) the spatio-temporal correlation of the model BSISV life cycle vs. that from the observed cyclostationary EOF (CsEOF) analysis of Annamalai and Sperber (2005). The life cycle of the BSISV is obtained by first projecting 20-100 day filtered OLR from observations (1979-2006) and the models (1961-1999) on to the Day 0 pattern of the observed CsEOF. The resulting PC is used for lag regression against the 20-100 day filtered OLR with the spatio-temporal correlation between model and observation being calculated for Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20. The skill scores for the intraseasonal variability are calculated over the region 40oE-180oE, 30oS-30oN. Missing table entries occur for models that did not have available data for analysis. The top five models with the largest skill scores for each diagnostic are highlighted

Table 3

Model

Indian Monsoon

East Asian Monsoon

BSISV

 

AIR/N3.4

Pr

Pr

850hPa

Variance

Life Cycle

Observations

-0.533

0.798

0.959

0.989

0.995

0.893

CMIP5 MMM

 

0.616

0.888

0.972

0.903

0.766

CMIP3 MMM

 

0.600

0.799

0.969

0.895

0.754

BCC-CSM-1

-0.250

-0.140

0.695

0.930

   

bccr-bcm2.0

-0.430

0.249

0.670

0.951

   

CanESM2

-0.273

0.014

0.672

0.861

0.846

0.651

cgcm3.1 (t47)

-0.335

0.404

0.625

0.899

0.727

0.605

cgcm3.1 (t63)

-0.182

0.173

0.703

0.938

0.717

0.604

CCSM4

-0.556

0.337

0.789

0.947

   

ccsm3

-0.561

0.264

0.722

0.800

0.695

0.588

pcm1

-0.356

0.293

0.232

0.870

   

CNRM-CM5

-0.307

0.245

0.642

0.894

   

cnrm-cm3

-0.484

0.419

0.313

0.727

0.570

0.600

CSIRO-Mk3.6.0

-0.487

0.162

0.346

0.858

0.809

0.645

csiro-mk3.0

-0.403

-0.112

0.629

0.939

0.830

0.581

csiro-mk3.5

-0.719

0.137

0.569

0.924

   

FGOALS-g2

-0.052

0.238

0.739

0.936

   

FGOALS-s2

0.114

0.096

0.787

0.921

0.734

0.608

fgoals-g1.0

-0.747

0.276

0.415

0.426

0.271

0.438

GFDL-CM3

-0.442

0.192

0.315

0.867

   

GFDL-ESM2G

-0.289

0.251

0.458

0.972

0.753

0.643

GFDL-ESM2M

-0.187

0.251

0.606

0.955

   

gfdl-cm2.0

-0.667

0.336

0.668

0.976

0.818

0.677

gfdl-cm2.1

-0.494

0.412

0.390

0.919

0.850

0.712

GISS-E2-H

-0.094

0.254

0.586

0.918

   

GISS-E2-R

-0.366

0.379

0.656

0.906

   

giss-aom

0.094

0.189

0.117

0.754

-0.070

0.395

HadCM3

-0.299

0.180

0.773

0.897

   

HadGEM2-CC

-0.335

-0.068

0.787

0.935

0.857

0.641

HadGEM2-ES

-0.344

0.216

0.839

0.949

0.862

0.651

ukmo-hadcm3

-0.374

0.323

0.758

0.947

   

ukmo-hadgem1

-0.446

0.154

0.744

0.912

   

ingv-sxg

-0.455

0.313

0.513

0.925

   

INMCM4

-0.033

0.110

-0.047

0.816

0.639

0.562

inm-cm3.0

-0.258

-0.073

0.520

0.850

   

IPSL-CM5A-LR

-0.700

0.611

0.450

0.708

0.791

0.654

IPSL-CM5A-MR

-0.763

0.636

0.532

0.749

0.827

0.635

ipsl-cm4

-0.554

0.347

0.675

0.787

0.785

0.648

MIROC-ESM

0.088

0.061

0.596

0.694

0.548

0.516

MIROC-ESM-CHEM

-0.104

0.045

0.687

0.882

0.554

0.528

MIROC4h

-0.327

0.529

0.723

0.921

0.736

0.625

MIROC5

-0.321

0.010

0.567

0.946

0.805

0.691

miroc3.2(hires)

0.080

-0.009

0.643

0.915

0.666

0.543

miroc3.2(medres)

-0.329

0.234

0.719

0.928

0.800

0.575

MPI-ESM-LR

-0.291

0.401

0.283

0.899

0.874

0.681

echam5/mpi-om

-0.573

0.560

0.230

0.817

0.873

0.721

miub-echo_g

-0.554

0.113

0.664

0.914

0.810

0.702

MRI-CGCM3

-0.274

0.338

0.819

0.937

0.782

0.628

mri-cgcm2.3.2

-0.424

0.107

0.570

0.931

0.575

0.654

NorESM1-M

-0.690

0.522

0.811

0.959

0.833

0.627

 


For further information please contact:

Kenneth R. Sperber, Ph.D.
Program for Climate Model Diagnosis and Intercomparison
Lawrence Livermore National Laboratory
P.O. Box 808, L-103
Livermore, CA 94551 USA

Email: sperber1@llnl.gov
Ph: 925-422-7720
Fax: 925-422-7675




Acknowledgements
K. R. Sperber was supported by the Office of Science (BER), U. S. Department of Energy through Lawrence Livermore National Laboratory contract DE-AC52-07NA27344. The authors thank Charles Doutriaux for assistance in making the animations, Renata McCoy for developing the webpage.
LLNL-WEB-600275