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Abstract The boreal summer Asian monsoon has been evaluated in 25 Coupled Model 49	
  
Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th 50	
  
Century. Diagnostics and skill metrics have been calculated to assess the time-mean, 51	
  
climatological annual cycle, interannual variability, and intraseasonal variability. 52	
  
Progress has been made in modeling these aspects of the monsoon, though there is no 53	
  
single model that best represents all of these aspects of the monsoon. The CMIP5 multi-54	
  
model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms 55	
  
of the skill of simulating pattern correlations with respect to observations. Additionally, 56	
  
for rainfall/convection the MMM outperforms the individual models for the time mean, 57	
  
the interannual variability of the East Asian monsoon, and intraseasonal variability. The 58	
  
pattern correlation of the time (pentad) of monsoon peak and withdrawal is better 59	
  
simulated than that of monsoon onset. The onset of the monsoon over India is typically 60	
  
too late in the models. The extension of the monsoon over eastern China, Korea, and 61	
  
Japan is underestimated, while it is overestimated over the subtropical western/central 62	
  
Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño3.4 63	
  
sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For 64	
  
both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall 65	
  
teleconnection, the MMM interannual rainfall anomalies are weak compared to 66	
  
observations. Though simulation of intraseasonal variability remains problematic, several 67	
  
models show improved skill at representing the northward propagation of convection and 68	
  
the development of the tilted band of convection that extends from India to the equatorial 69	
  
west Pacific. The MMM also well represents the space-time evolution of intraseasonal 70	
  
outgoing longwave radiation anomalies. Caution is necessary when using GPCP and 71	
  
CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences 72	
  
over ocean and land between these two data sets, and (2) the timing of monsoon 73	
  
withdrawal over India, where the smooth southward progression seen in India 74	
  
Meteorological Department data is better realized in CMAP data compared to GPCP 75	
  
data. 76	
  
 77	
  
 78	
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1 Introduction 82	
  
 83	
  
Nearly half of the world’s population is dependent on monsoon rainfall for food and 84	
  
energy security. The monsoon is an integral and robust component of the seasonal cycle, 85	
  
though the vagaries of its timing, duration, and intensity are of major concern, especially 86	
  
over semi-arid regions where agriculture is the primary source of food. On interannual 87	
  
time scales the standard deviation of the Indian/South Asian monsoon rainfall is on the 88	
  
order of 10% of the seasonal mean, and the corresponding percentage of East Asian 89	
  
summer monsoon rainfall is ~30% (Zhou and Yu 2005). However, subseasonal variations 90	
  
can give rise to much greater swings in rainfall variability and modulate higher frequency 91	
  
variations, including tropical cyclones (e.g. Nakazawa 1986). Recent examples of such 92	
  
extreme swings in the monsoon include the July 2002 drought over India (Prasanna and 93	
  
Annamalai 2012), and the Pakistan flood of July-August 2010 (Lau and Kim 2010). 94	
  
Forewarning of extreme subseasonal variations is particularly important, since this would 95	
  
enable the selection of alternative crops, the adjustment of planting times, and 96	
  
management of hydrometeorological services (water distribution, etc.) to help cope with 97	
  
the extreme conditions (Webster and Jian 2011). Improvement in the prospects of 98	
  
monsoon predictability at all time scales requires (1) an improved understanding of the 99	
  
physical processes that modulate the monsoon, (2) improved observations for processes 100	
  
studies, initialization of forecast models, and long term monitoring, and (3) better 101	
  
simulation of the monsoon in numerical weather prediction models and climate models.  102	
  

There are many facets of the atmosphere-ocean-land-cryosphere system that interact 103	
  
to produce monsoon. The seasonal cycle of solar forcing is the basic driver of the 104	
  
monsoon over the Asian region, contributing to the development of a land-sea 105	
  
temperature gradient, including aloft, due to heating of the Tibetan Plateau (Li and Yanai 106	
  
1996; Webster et al. 1998). The temperature and sea-level pressure gradients that develop 107	
  
promote the formation of the low-level cross-equatorial southwest monsoon circulation 108	
  
(Findlater 1970). This circulation transports moisture laden air from the ocean to feed 109	
  
convection (Pearce and Mohanty 1984) that leads to the onset of the monsoon. 110	
  
Subsequently, the off-equatorial convective heating interacts with the circulation to help 111	
  
maintain monsoon rainfall (Gill 1980; Annamalai and Sperber 2005). 112	
  

Precursory and/or contemporaneous forcings, such as those related to snowcover 113	
  
(Blanford 1884), and pressure over the Pacific and Indian Oceans (Walker 1924), 114	
  
suggested evidence that teleconnections from remote regions could influence the 115	
  
monsoon, and be a source of predictability. Potential prediction of such slowly varying 116	
  
components of the climate system, especially sea surface temperature (SST; Charney and 117	
  
Shukla 1981), form the basis of seasonal prediction systems with dynamical models and 118	
  
empirical/statistical models. The main skill in seasonal forecasting of the monsoon is 119	
  
intimately linked to our ability to forecast the El Niño/Southern Oscillation (ENSO). 120	
  
However, properly representing the location and intensity of the ENSO diabatic heating 121	
  
is essential for getting a response consistent with that expected from statistical 122	
  
teleconnections relationships (Slingo and Annamalai 2000). Other more local 123	
  
interactions, such as Indian Ocean variations (Boschat et al. 2012) and soil moisture 124	
  
(Webster et al. 1998), may play a role in modulating the monsoon. 125	
  

Given the multitude of physical processes and interactions that influence the 126	
  
monsoon, it is no wonder that simulation and prediction of the monsoon remain grand 127	
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challenge problems. The challenges of modeling the monsoon and making climate 128	
  
change projections have been discussed in Turner et al. (2011) and Turner and Annamalai 129	
  
(2012). By its very nature, simulating the monsoon requires models with coupling 130	
  
between the atmosphere, the ocean, and land. In prescribed SST experiments, such as 131	
  
from the Tropical Ocean Global Atmosphere Monsoon Experimentation Group (WCRP 132	
  
1992, 1993), the Atmospheric Model Intercomparison Project (Sperber and Palmer 133	
  
1996), and the Climate Variability and Predictability (CLIVAR) Climate of the 20th 134	
  
Century simulations (Zhou et al. 2009a) observed interannual variations of Asian-135	
  
Australian monsoon rainfall over land were poorly represented. This in part occurred 136	
  
because of the use of prescribed SST’s, which forced an incorrect rainfall-SST 137	
  
teleconnection (Wang et al. 2004). Ocean-atmosphere coupling also gives rise to a wide-138	
  
range of model performance, in which monsoon climate and variability can be adversely 139	
  
affected by poorly representing air-sea interaction and its relationship to evaporation 140	
  
(Bollasina and Nigam 2009). Even so, incremental progress in simulating monsoon has 141	
  
been hard-fought due to improvements in local, regional, and global interactions that 142	
  
modulate the monsoon on diurnal through interdecadal time scales (e.g. Wang 2006). 143	
  

The goal of this paper is to assess the fidelity of boreal summer Asian monsoon in the 144	
  
Coupled Model Intercomparison Project-5 (CMIP5) models as compared to the CMIP3 145	
  
models and observations. We employ a multitude of diagnostics and skill metrics to 146	
  
present a quantitative assessment of the models’ monsoon performance relative to 147	
  
observations. The diagnostics were selected after much deliberation by the CLIVAR 148	
  
Asian-Australian Monsoon Panel (AAMP) Diagnostics Task Team, and helpful 149	
  
comments from the AAMP membership and other experts. The accompanying skill 150	
  
scores are meant to provide a broad overview of the ability to simulate the Asian summer 151	
  
monsoon, though analysis at the process-level is beyond the scope of this assessment. We 152	
  
will, however, discuss possible physical interpretations of the main results. The models 153	
  
and observations are discussed in Section 2. We evaluate the time-mean rainfall and 154	
  
850hPa wind in Section 3, and the climatological annual cycle and timing of monsoon 155	
  
onset, peak, withdrawal, and duration are explored in Section 4. The interannual 156	
  
variability of the ENSO-monsoon teleconnection, and teleconnections to the 850hPa 157	
  
zonal wind over East Asia are given in Section 5. Boreal summer intraseasonal variability 158	
  
(BSISV) is evaluated in Section 6, and discussion and conclusions are given in Section 7. 159	
  
 160	
  
 161	
  
2 Models, Observations, and Skill Scores 162	
  
 163	
  
Table 1 contains basic information on the CMIP5 (Taylor et al. 2012) and CMIP3 models 164	
  
(Meehl et al. 2007) used in this study, including horizontal and vertical resolution of the 165	
  
atmospheric and oceanic components. The CMIP5 models were developed circa 2011, 166	
  
while the CMIP3 models were developed circa 2004. To more easily discriminate 167	
  
between the two vintages of models in this paper, the model designations for the CMIP5 168	
  
models are capitalized, while the model designations of the CMIP3 models are given as 169	
  
lower-case. Single realizations for each of the models have been evaluated using the 170	
  
historical simulations from CMIP5 and the Climate of the 20th Century (20c3m) 171	
  
simulations from CMIP3. Though the simulation period is ~1850-present, the period 172	
  
1961-99 is analyzed herein. This is the period when both CMIP5 and CMIP3 had high-173	
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frequency (daily) data with which to evaluate intraseasonal variability and the 174	
  
climatological annual cycle of pentad rainfall. Thus, the analysis period of the high-175	
  
frequency variability is consistent with the analysis period of the interannual variability 176	
  
and the climatological performance derived from monthly data. These simulations 177	
  
include the modeling groups best estimates of natural (e.g. solar irradiance, volcanic 178	
  
aerosols) and anthropogenic (e.g. greenhouse gases, sulfate aerosols, ozone) climate 179	
  
forcing during the simulation period. Compared to CMIP3, the CMIP5 models typically 180	
  
have higher horizontal and vertical resolution in the atmosphere and ocean, a more 181	
  
detailed treatment of aerosols, and some have a more complete representation of the 182	
  
Earth system (e.g. carbon cycle). Detailed documentation of the CMIP3 models can be 183	
  
found at: 184	
  
http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php 185	
  
and CMIP5 model documentation can be found at: 186	
  
http://www.earthsystemgrid.org/search?Type=Simulation+Metadata 187	
  

 In most cases, multiple sources of observations are used in our analysis. For rainfall 188	
  
we use the Global Precipitation Climatology Project (GPCP) data (Huffman et al., 2001) 189	
  
and the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and 190	
  
Arkin 1997) for 1979-2007. Advanced Very-High Resolution Radiometer daily outgoing 191	
  
longwave radiation for 1979-2006 (AVHRR OLR, Liebmann and Smith 1996), which is 192	
  
a good proxy of tropical convection (Arkin and Ardanuy 1989), is used to validate 193	
  
intraseasonal variability. For the 850hPa wind we use the Japan Meteorological Agency 194	
  
and the Central Research Institute of Electric Power Industry Reanalysis-25 (JRA-25; 195	
  
Onogi et al. 2007) for 1979-2007, the European Centre for Medium-Range Weather 196	
  
Forecasts Reanalysis-40 (ERA40; Uppala et al. 2005) for 1961-1999, and the National 197	
  
Centers for Environmental Prediction/National Center for Atmospheric Research 198	
  
Reanalysis (NCEP/NCAR; Kalnay et al. 1996) for 1961-2007.  199	
  

Model skill is calculated against a primary observational data set, for example, GPCP 200	
  
in the case of precipitation. Given that the observations are only estimates of the true 201	
  
values, we also calculate the skill between the different sets of observations. This 202	
  
observational skill estimate is a measure of consistency between the two sets of 203	
  
observations. The model skill is predominantly assessed using pattern correlation 204	
  
between the models and observations. Space-time correlation is used to assess the life 205	
  
cycle of the model and observed intraseasonal variability. Correlation of anomalies of all-206	
  
India rainfall (AIR) and Niño3.4 SST is one skill metric used to assess the ENSO-207	
  
monsoon relationship, and the threat score and hit-rate are used to assess how well the 208	
  
models represent the observed spatial extent of the monsoon domain. The skill scores for 209	
  
the individual models and the multi-model means (MMM’s) are presented in scatter 210	
  
plots, and the numerical values are given in Tables 2 and 3. For the calculation of the 211	
  
skill metrics, the model data have been regridded to a 2.5o x 2.5o grid (144 x 73 for winds 212	
  
and OLR (the AVHRR grid), and 144 x 72 for precipitation (the grid of GPCP and 213	
  
CMAP). More details of the skill scores are presented in the relevant sections of the 214	
  
paper. 215	
  

Due to the large number of models evaluated, in this paper we only present spatial 216	
  
patterns of the diagnostics for the observations, for the two models that demonstrate the 217	
  
range of performance based on the relevant skill score, and for the CMIP5 and CMIP3 218	
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MMM’s. To facilitate evaluation by the modeling groups and other interested parties, we 219	
  
have posted figures for all of the models for each of the diagnostics at:  220	
  
http://www-pcmdi.llnl.gov/projects/ken/cmip5_bsisv/Tables.html 221	
  
 222	
  
 223	
  
3 Time-mean State 224	
  
 225	
  
The June-September time-mean patterns of rainfall and 850hPa wind represent key 226	
  
aspects of the monsoon. The intense solar heating in late spring and early summer 227	
  
supports the development of a heat low over the land of south and Southeast Asia. The 228	
  
resulting land-sea thermal and pressure gradients induce the development of cross-229	
  
equatorial low-level winds that transport an increased flux of moisture onto the Asian 230	
  
landmass, heralding the onset of the monsoon. The strong coupling between diabatic 231	
  
heating and the circulation further amplifies the cross-equatorial flow, the moisture 232	
  
influx, and the rainfall. The orographic structure of the Asian landmass provides anchor 233	
  
points where the observed monsoon rainfall tends to be concentrated, especially adjacent 234	
  
to the Western Ghats, the foothills of the Himalayas, the Burmese coast, and the 235	
  
Philippines (Fig. 1a). The orography also plays an important role in anchoring the 236	
  
intensity and position of the cross-equatorial flow (Hoskins and Rodwell 1995). Thus, 237	
  
apart from realistic representation of physical processes, the details of the vertical 238	
  
representation of orography and its interaction with the circulation are important for 239	
  
realistic simulation of regional rainfall in models. With a pattern correlation of 0.93 240	
  
between GPCP and CMAP rainfall, the spatial distribution of observed rainfall is well 241	
  
established (Table 2). The vagaries in simulating the multitude of physical processes 242	
  
involved in the monsoon leads to diversity in the ability to simulate the observed rainfall 243	
  
distribution, as seen in Figs. 1b and 1c. Despite gridscale noise at its native horizontal 244	
  
resolution (Fig. 1b), when regridded to the observational horizontal resolution (not 245	
  
shown), the CNRM-CM5 model has the highest pattern correlation with GPCP rainfall. 246	
  
This model over-emphasizes the monsoon rainfall over the tropical oceans and does not 247	
  
capture the local maxima over central India. The MIROC-ESM model, Fig. 1c, has the 248	
  
smallest pattern correlation with GPCP rainfall, and it overestimates the rainfall over the 249	
  
Arabian Sea, and it underestimates the East Asian component of the monsoon. 250	
  

The MMM is an efficient way to assess the overall performance of the CMIP5 and 251	
  
CMIP3 models. For both sets of integrations, the MMM outperforms the individual 252	
  
models in terms of the pattern correlation skill metric (Table 1). Figures 1d and 1e 253	
  
indicate that the CMIP5 MMM has an improved representation of rainfall compared to  254	
  
the CMIP3 MMM. This is reflected by the more realistic magnitude of rainfall adjacent 255	
  
to the Western Ghats, the foothills of the Himalayas, and adjacent to the Philippines. The 256	
  
enhanced skill in representing the precipitation anchor points in the CMIP5 models may 257	
  
be associated with their higher horizontal resolution compared to the CMIP3 models. 258	
  
Even so, the MMM’s have smaller pattern correlations than that between GPCP and 259	
  
CMAP, indicating scope for model improvement in the representation of rainfall.  260	
  

Figures 1f-1j show the spatial distributions of the rainfall errors. The magnitude of the 261	
  
rainfall errors in individual models (Figs. 1g and 1h) is larger than seen in observations 262	
  
(Fig. 1f) and the MMM’s (Figs. 1i-1j). The CMIP5 and CMIP3 MMM errors have 263	
  
virtually the same spatial structure, with an underestimate of rainfall over the Asian 264	
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continent from India to Southeast Asia, and extending north over eastern China, Korea, 265	
  
and southern Japan. The error over eastern China, Korea, and Japan indicates that rainfall 266	
  
in the Meiyu front is underestimated. Alternatively, the rainfall is over-estimated over 267	
  
most of the tropical western/central Indian Ocean. Over the western Pacific, there is a 268	
  
tripole error pattern from the equator to 45oN. The MMM error structure is largely 269	
  
consistent with difference between CMAP and GPCP (Fig. 1f). A similar error structure 270	
  
is also seen by comparing Tropical Rainfall Measurement Mission rainfall with GPCP 271	
  
(Brian Mapes, personal communication, 2012), suggesting that the lack of definitive 272	
  
precipitation intensity estimates may be an impediment to making further progress in 273	
  
simulating monsoon rainfall. 274	
  

The observed and simulated time-mean 850hPa wind is given in Fig. 2. Skill is 275	
  
calculated with respect to ERA40. The ERA40 and JRA25 reanalysis (not shown) 276	
  
estimates of the wind structure are highly consistent, as indicated by                                                                                                                   277	
  
their pattern correlation of 0.99 (Table 2). The main features of the low-level monsoon 278	
  
circulation include the cross-equatorial flow over the western Indian Ocean/East African 279	
  
highlands, the westerly flow that extends from the Arabian Sea to the South China Sea, 280	
  
the monsoon trough over the Bay of Bengal, and the weak southerlies over the South 281	
  
China Sea and East Asia. The difference between JRA25 and ERA40, seen in Fig. 2f 282	
  
(note the different unit vector scale relative to the full field in Fig. 2a), is smaller than that 283	
  
between the NCEP-NCAR and ERA15 reanalyses (Annamalai et al. 1999), where there 284	
  
were also large errors over the tropical Indian Ocean. The simulated northwesterly wind 285	
  
error over the Arabian Peninsula, and the northerly error over Pakistan and the Thar 286	
  
Desert, Figs. 2g-2j, is similar to the differences between the reanalyses (Fig. 2f). This 287	
  
suggests that improved observations are needed to constrain the climate simulations. It is 288	
  
possible that a dearth of rawindsonde reports from remote regions, in conjunction with 289	
  
the way in which the land surface processes and/or orography are handled, may 290	
  
contribute to the observational uncertainty over the land from the reanalyses. 291	
  

As for rainfall, the MMM’s (Figs. 2d and 2e) outperform the range of model behavior 292	
  
(Figs. 2b and 2c), and the systematic model error is nearly identical between CMIP5 and 293	
  
CMIP3 (Figs. 2i and 2j). The MMM wind error is consistent with the rainfall error, with 294	
  
weak flow over India and the Bay of Bengal being associated with the underestimated 295	
  
rainfall over these locations. Despite overly strong rainfall over the western Arabian Sea, 296	
  
both CMIP5 and CMIP3 MMM’s suggest that the underestimated cross-equatorial flow is 297	
  
associated with the underestimated off-equatorial diabatic heating anomalies along the 298	
  
monsoon trough, near 20oN. The monsoon trough over the Bay of Bengal is too zonal 299	
  
(Figs. 2d and 2e), which may contribute to the excessive rainfall in the vicinity of the 300	
  
South China Sea and Maritime Continent (Figs. 1d and 1e). Support for this scenario has 301	
  
been found in experiments using the GFDL AM2.1 model (Annamalai et al. 2012a). 302	
  
However, the sequence of events that give rise to these errors needs to be worked out: Is 303	
  
it the poor development of the monsoon trough that gives rise to the excessive rainfall 304	
  
near the Maritime Continent, or does excessive rainfall near the Maritime Continent 305	
  
result in a poor representation of the monsoon trough? Alternative and/or additional 306	
  
interactions/feedbacks need to be considered in the development of the systematic error, 307	
  
including the possible role of Rossby wave descent over South Asia (Annamalai and 308	
  
Sperber 2005), SST feedback, and moisture transports. 309	
  



	
   7	
  

Over the western Pacific the simulated cyclonic wind error (Figs. 2g-2j), which is 310	
  
consistent with the rainfall overestimate seen near 120oE-180oE, 8oN-22oN (Figs. 1g and 311	
  
1i-1j; PCM rainfall error not shown), indicates a large bias in the simulation of the 312	
  
western Pacific subtropical high. The northeasterly wind error along the poleward flank 313	
  
of this cyclonic circulation pattern and the northerly error over the South China Sea are 314	
  
indicative of lower moisture content air (Prasanna and Annamalai 2012) and reduced 315	
  
rainfall along the Meiyu, Changma, Baiu rainfall front. For the MMM’s, the time mean 316	
  
wind and the wind error oppose each other, suggesting that reduced moisture from 317	
  
monsoon westerlies and the southerlies over the South China Sea is a contributing factor 318	
  
in the weak Meiyu, Changma, Baiu front. However, in the case of PCM, the time-mean 319	
  
wind and the wind error (Figs. 2b and 2h) are both easterly/northeasterly near southern 320	
  
Japan and China, suggesting that advection of lower moisture air from the extratropics is 321	
  
a factor in producing the weak Meiyu, Changma, Baiu front. 322	
  

The overall skill in simulating the time-mean monsoon is given in Fig. 3, which is a 323	
  
scatterplot of the pattern correlation relative to observations (ERA-40 and GPCP) for 324	
  
850hPa wind vs. precipitation. The results indicate that for all models the 850hPa wind is 325	
  
better simulated than the precipitation. This is perhaps not surprising since the circulation 326	
  
is a response to integrated diabatic heating and not to the details of the regional rainfall 327	
  
distribution. For 850hPa wind, the MMM and CNRM-CM5 skill are within the range of 328	
  
observational skill when NCEP/NCAR Reanalysis wind is also considered. Importantly, 329	
  
for both CMIP5 and CMIP3 there is a better than 1% statistically significant relationship 330	
  
between the skill in representing the rainfall and the 850hPa wind. For example, the 331	
  
CNRM-CM5 had the largest pattern correlation with observations for both rainfall and 332	
  
850hPa wind (Table 2). The statistical relationship suggests that improving the rainfall in 333	
  
the models will result in an improved representation of the wind and vice versa. 334	
  
 335	
  
 336	
  
4 Annual Cycle 337	
  
 338	
  
In this section we evaluate the annual cycle of rainfall using climatologies of both 339	
  
monthly data and pentad data. The monthly data are used to generate latitude-time plots 340	
  
to assess how well the models represent the annual cycle of rainfall in the vicinity of 341	
  
India, including the northward propagation of the continental rainband. The pentad data 342	
  
are used to assess how well the models represent the time of monsoon onset, peak, 343	
  
withdrawal, and the duration of the monsoon season, as well as the spatial extent of the 344	
  
monsoon domain. 345	
  
 346	
  
4.1 Indian Monsoon 347	
  
 348	
  
A latitude-time diagram of monthly rainfall, averaged between 70oE-90oE, is constructed 349	
  
to show the transition of rainfall between the ocean and the Indian subcontinent during 350	
  
the course of the annual cycle. The GPCP and CMAP observations (Figs. 4a and 4b, 351	
  
respectively) show the development of two rainfall maxima beginning in May. The 352	
  
poleward branch depicts the evolution of the Indian monsoon, with the maximum rainfall 353	
  
occurring in July. The oceanic branch, located near 5oS, reaches a local maximum in 354	
  
September, as the Indian monsoon weakens. These features are consistent between GPCP 355	
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and CMAP, with a pattern correlation of 0.89 over the domain 10oS-30oN for May-356	
  
October (see box in Fig 4a). However, CMAP is drier (wetter) than GPCP over India (the 357	
  
tropical Indian Ocean), consistent with the observational biases noted for the time mean 358	
  
state (see Fig. 1, Section 3). Furthermore, these biases in the distribution of land vs. 359	
  
oceanic rainfall also give rise to uncertainty in the latitude of maximum rainfall over 360	
  
India during the boreal summer in GPCP and CMAP. 361	
  

The latitude-time plots for MIROC5 and csiro-mk3.5 show the range of model skill in 362	
  
representing the annual cycle of rainfall over the Indian longitudes (Figs. 4c and 4d), 363	
  
based on pattern correlation skill over the afore-mentioned space-time domain. MIROC5 364	
  
overestimates the magnitude of the Indian monsoon and oceanic rainfall bands. The 365	
  
oceanic rainband and the rainfall minimum to its north are not as coherent as observed, 366	
  
contributing to a pattern correlation of 0.78 relative to GPCP. csiro-mk3.5 has a late 367	
  
development of the Indian monsoon, and the oceanic rainband transitions into the 368	
  
Northern Hemisphere during boreal summer, unlike the observations. With such biases, 369	
  
csiro-mk3.5 only has a pattern correlation of 0.17 with GPCP. 370	
  

The CMIP5 and CMIP3 MMM’s (Figs. 4e and 4f) have nearly identical pattern 371	
  
correlations with GPCP (0.67 and 0.66, respectively). The MMM’s indicate that the core 372	
  
of the continental rainband does not propagate as far north as observed, consistent with 373	
  
the model biases seen of other modeling studies (Gadgil and Sajani 1998; Rajeevan and 374	
  
Najundiah 2009). Additionally, both MMM fail to capture the observed northward 375	
  
propagation of the rainfall minimum from the equator to 10oN during boreal summer, and 376	
  
the oceanic rainband is weaker than observed. This latter error is also seen in the JJAS 377	
  
rainfall climatology (Fig. 1i and 1j). Even so, there is improvement in the CMIP5 MMM 378	
  
compared to the CMIP3 MMM, with a more realistic magnitude of rainfall between 379	
  
10oN-20oN during July and August. Consistent with the results given in Figs. 1d and 1e, 380	
  
this improvement is related to the better representation of monsoon rainfall adjacent to 381	
  
the Western Ghats in CMIP5 compared to CMIP3. The annual cycle skill scores from all 382	
  
of the models are further evidence of improvement in the simulation of the annual cycle 383	
  
of rainfall in CMIP5 compared to CMIP3 (Fig. 4g). Notably, 6/10 and 13/20 of the 384	
  
largest skill scores are from CMIP5 models.  385	
  
 386	
  
4.2 Monsoon Onset, Peak, Withdrawal, and Duration 387	
  
 388	
  
The analysis of the annual cycle of the monsoon using pentad data is restricted to 21/25 389	
  
CMIP5 models and 18/22 CMIP3 models due to limitations in the availability of high-390	
  
frequency rainfall data. To facilitate the analysis, the climatological pentads of rainfall 391	
  
from the models have first been regridded to the GPCP grid. Our methodology closely 392	
  
follows that of Wang and LinHo (2002). At each gridpoint the pentad time series is 393	
  
smoothed with a five pentad running mean. The smoothing removes high-frequency 394	
  
fluctuations that arise due to the limited sample size, while retaining the climatological 395	
  
intraseasonal oscillation (LinHo and Wang 2002). The January mean rainfall is then 396	
  
removed from each pentad, resulting in the relative rainfall rate. Using GPCP data, an 397	
  
example of the relative rainfall rate for the Bay of Bengal is given in Fig. 5. At a given 398	
  
gridpoint, the boreal summer monsoon is taken to occur if the relative rainfall rate 399	
  
exceeds 5mm day-1 during May-September. Onset is defined as the first pentad at which 400	
  
this threshold is met or exceeded. The time of peak monsoon is the pentad at which the 401	
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maximum relative rainfall rate occurs, and the withdrawal of the monsoon is the first 402	
  
pentad at which the relative rainfall rate falls below the onset criterion. The duration of 403	
  
the monsoon is defined as: (decay pentad) minus (onset pentad). Given that the monsoon 404	
  
is defined by a threshold criterion, the monsoon domain will be different for each of the 405	
  
models. Therefore, the MMM of the onset, peak, decay, and duration is calculated at 406	
  
gridpoints if half or more of the models have monsoon defined at that location. Skill is 407	
  
assessed using pattern correlation for gridpoints where both observations and models 408	
  
have monsoon defined. 409	
  

Since the monsoon is defined by a threshold criterion, this approach is a severe test of 410	
  
a models ability to properly represent the observed amplitude and timing of the annual 411	
  
cycle of the monsoon. Thus, for a given model, absence of a signal relative to 412	
  
observations indicates that the model does not have the correct amplitude of the annual 413	
  
cycle, and this is a critical piece of information for modelers to consider during the course 414	
  
of model development. 415	
  

The pentads of onset and the peak monsoon for the observations and models are given 416	
  
in Fig. 6. The observed pattern of onset, seen in Fig. 6a, is consistent with the analysis of 417	
  
Wang and LinHo (2002). Monsoon onset occurs first over Southeast Asia (Matusmoto 418	
  
1997), and then subsequently over the South China Sea and to the southwest of India. Wu 419	
  
et al. (2012) have found that the development of the Asian summer monsoon onset vortex 420	
  
is a consequence of air-sea interaction over the Bay of Bengal. The onset progresses 421	
  
northward from these locations, subsequently engulfing India, southern China, Korea, 422	
  
Japan, and the western Pacific. The range of skill in simulating the pentad of monsoon 423	
  
onset is given by gfdl cm2.0 and inm-cm3.0 (Figs. 6b and 6c). The former model 424	
  
essentially has the progression correct, but the onset occurs later than observed over 425	
  
India. However, this model fails to define monsoon over northern China, Korea, and 426	
  
Japan, while it has overly extensive monsoon rainfall over the western/central Pacific 427	
  
Ocean. inm-cm3.0 also has a late onset over India, but the monsoon incorrectly 428	
  
progresses from north to south over China. The CMIP5 MMM has a larger pattern 429	
  
correlation with GPCP than the CMIP3 MMM (Figs. 6d and 6e, Table 2), indicating 430	
  
improvement in the ability to simulate the onset of the monsoon. This is seen as a more 431	
  
realistic onset time over Southeast Asia. However, for both MMM’s, the onset still 432	
  
remains too late over India, and they overestimate the monsoon extension over the 433	
  
western/central Pacific Ocean. Contrary to the time-mean monsoon, individual models 434	
  
exceed the skill of the MMM. 435	
  

Regarding the time of peak monsoon, the observations indicate that over the Arabian 436	
  
Sea and extending into India the peak time occurs progressively later, as it does from the 437	
  
southeast of Japan into eastern/central China (Fig. 6f). However, over southwestern 438	
  
China to Southeast Asia the peak monsoon rainfall occurs from north to south, indicating 439	
  
that the maximum rainfall occurs as the monsoon retreats. MIROC5 best represents this 440	
  
progression, though the time of the peak monsoon over India is too late (Fig. 6g), and the 441	
  
extent of the observed monsoon over the western Pacific is not simulated. echo-g 442	
  
qualitatively represents the northward progression of the peak pentad near India, though 443	
  
the actual timing is poorly represented there and over Southeast Asia (Fig. 6h). The 444	
  
CMIP5 MMM outperforms the CMIP3 MMM (Figs. 6i and 6j), though both are more 445	
  
uniform compared to observations in representing the time of the monsoon peak, and they 446	
  
lack the early peak near 90oE over the Bay of Bengal. The spatial extent of the monsoon, 447	
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in the CMIP5 MMM is more realistic than in the CMIP3 MMM, with the monsoon 448	
  
domain extending over northeast China. The spatial extent of the monsoon is discussed in 449	
  
more detail below. 450	
  

The earliest withdrawal of the observed monsoon occurs over the West Pacific to the 451	
  
southeast of Japan, over China, and over the Arabian Sea, the periphery of the monsoon 452	
  
domain (Fig. 7a). Over East Asia the withdrawal progresses southward from northeast 453	
  
China, with the latest withdrawal occurring over Southeast Asia and the South China Sea. 454	
  
Over India, the results in Fig. 7a indicate that the GPCP data do not represent the smooth 455	
  
withdrawal of the monsoon from northwest India to southeast India (the reverse of the 456	
  
onset progression), as seen from the “Normal Date For Withdrawal of Southwest 457	
  
Monsoon” from the India Meteorological Department 458	
  
(http://www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm). Our analysis 459	
  
indicates that CMAP data is more suitable for representing this aspect of the monsoon 460	
  
withdrawal. This is confirmed by comparing our CMAP results (not shown) with those 461	
  
from Wang and LinHo (2002, their Fig. 8). MIROC5 well represents the gross features of 462	
  
observed monsoon withdrawal, though it simulates a large land-sea contrast in the 463	
  
withdrawal time, and with the withdrawal occurring later than observed over India (Fig. 464	
  
7b). echo-g also has a late withdrawal over India, with only a hint of evidence of north to 465	
  
south withdrawal over China due to its truncated monsoon domain (Fig. 7c). The CMIP5 466	
  
MMM outperforms the CMIP3 MMM, though both MMM’s are more zonal than 467	
  
observed in their north to south withdrawal (Figs. 7d and 7e). As for the onset phase, 468	
  
individual models outperform the MMM. 469	
  

The observed duration of the monsoon is longest (~29-37 pentads) over Southeast 470	
  
Asia, and it becomes (more or less) progressively shorter with increasing radial distance 471	
  
over the surrounding monsoon domain (Fig. 7f). CNRM-CM5 well represents this gross 472	
  
structure (Fig. 7g), though the monsoon domain is not as contiguous as observed. A 473	
  
similar radial structure is seen in both MMM’s (Figs. 7i and 7j), with CMIP5 better 474	
  
representing monsoon duration than CMIP3. Despite the late onset over India in the 475	
  
MMM’s (Figs. 6d and 6e), the monsoon duration over India is overestimated by up to 476	
  
three pentads. These results suggest that over some regions the models have a monsoon 477	
  
seasonal cycle that is phase-delayed and/or longer in duration when compared to 478	
  
observations. 479	
  

Figures 8a-8c show the skill of the models in simulating the pattern correlation 480	
  
relative to GPCP of the onset vs. the peak, withdrawal, and duration of the monsoon, 481	
  
respectively. The motivation is to evaluate which aspects of the annual cycle are best 482	
  
represented, and to test whether skill in simulating the onset, also translates into skill in 483	
  
representing the other stages in the annual cycle evolution of the monsoon. Figures 8a 484	
  
and 8b indicate that the skill in simulating the pattern of monsoon peak and monsoon 485	
  
withdrawal typically exceeds that of onset, but there is no statistical relationship in either 486	
  
peak or withdrawal skill relative to onset skill. However, the regression fits in Fig. 8c, 487	
  
significant at better than the 1% level, indicate that the pattern of the monsoon duration is 488	
  
better represented in models that have a better simulation of the onset pattern. In 489	
  
summary, the pattern correlation skill metrics indicate that the models are very diverse in 490	
  
their ability to simulate the monsoon annual cycle, with the CMIP5 MMM outperforming 491	
  
the CMIP3 MMM (Table 2). Biases in the annual cycle of SST, the spatial distribution of 492	
  
rainfall, and the vertical structure of the diabatic heating that are important for the 493	
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circulation and moisture transports may all play a role in the errors in simulating the 494	
  
annual cycle evolution of the monsoon. 495	
  

The hit rate and threat score are two categorical skill scores that are used to quantify 496	
  
the ability of the models to simulate the observed (GPCP) spatial domain of the monsoon. 497	
  
The skill analysis is performed over the region 40oE-180oE, 10oS-50oN (see Fig. 6). 498	
  
These skill scores are based on a 2x2 contingency table, where a = the number of grid 499	
  
points at which the model correctly represents the observed presence of monsoon, b = the 500	
  
number of gridpoints at which the model represents monsoon, but monsoon is not 501	
  
observed, c = the number of gridpoints at which the model represents the absence of 502	
  
monsoon, but monsoon is observed, and d = the number of grid points at which the model 503	
  
correctly represents the observed absence of monsoon. The hit rate is the fraction of 504	
  
model gridpoints that are correctly represented as observed monsoon and non-monsoon 505	
  
([a + d]/[a + b + c + d]). The threat score, preferable when the quantity being forecast (the 506	
  
presence of the monsoon) occurs less frequently than the alternative (absence of the 507	
  
monsoon), “is the number of correct ‘yes’ forecasts divided by the total number of 508	
  
occasions on which that event was forecast and/or observed (a/[a + b + c]). It can be 509	
  
viewed as a hit rate for the quantity being forecast, after removing correct ‘no’ forecasts 510	
  
(d) from consideration” (Wilks 1995, p.240). A hit rate and threat score of 1.0 would 511	
  
indicate perfect agreement between model and observations. Figure 8d and Table 2 512	
  
indicate that the CMIP5 MMM is more skillful than the CMIP3 MMM in representing 513	
  
the spatial extent of the monsoon, with individual models being more skillful than the 514	
  
MMM’s. The low model skill relative to that between CMAP with GPCP confirms the 515	
  
results of Figs. 6 and 7 that improving the extent of the simulated monsoon domain is 516	
  
needed. Particularly problematic in the models is the lack of a monsoon extension over 517	
  
northeast China, Korea, and Japan, and the incorrect monsoon signal simulated over the 518	
  
central Pacific Ocean. 519	
  
 520	
  
 521	
  
5 Interannual Variability 522	
  
 523	
  
In this section we evaluate the interannual variability of (1) the ENSO-monsoon 524	
  
teleconnection, with emphasis on the rainfall response in South Asia to Niño3.4 SST 525	
  
anomalies, and (2) the response of rainfall and 850hPa wind in the East Asia region to the 526	
  
meridional gradient of the zonal wind anomalies at 850hPa. 527	
  
 528	
  
5.1 Indian Summer Monsoon 529	
  
 530	
  
The relationship between AIR and ENSO is one of the most studied teleconnections in 531	
  
climate science (see review article by Turner and Annamalai 2012). Annamalai et al. 532	
  
(2007) provided an analysis of the time-mean state and interannual-interdecadal 533	
  
variability of the Asian summer monsoon in the CMIP3 models. The complexities in 534	
  
representing (1) the spatial distribution of the time-mean monsoon rainfall, (2) the ENSO 535	
  
forcing from the tropical Pacific, and (3) the seasonality of the ENSO-monsoon 536	
  
relationship revealed that only four of the CMIP3 models were realistic in representing 537	
  
the interannual coupled atmosphere-ocean teleconnection between AIR and tropical SST. 538	
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Given in Fig. 9 and Table 3 is the lag 0 teleconnection between JJAS Niño3.4 SST 539	
  
anomalies and JJAS AIR anomalies. This provides a preliminary skill estimate of the 540	
  
models ability to represent the AIR-ENSO relationship. Over the period 1961-1999 the 541	
  
observations indicate the anti-correlation to be about -0.5. However, there is no 542	
  
expectation that the models should represent exactly this magnitude of anticorrelation, 543	
  
since their ENSO variability may be unrealistic, and/or their ENSO characteristics may 544	
  
be regime dependent with periods (decades or longer) when ENSO is stronger or weaker 545	
  
than presently observed (Wittenberg 2009). Therefore, the bounds of the observed 546	
  
interdecadal variability of the AIR-ENSO teleconnection are used to provide a constraint 547	
  
on evaluating model performance. The observed anticorrelation ranges from 548	
  
approximately -0.3 to -0.75 at interdecadal time scales, and rarely has it been statistically 549	
  
insignificant (Annamalai et al. 2007). Changes in the interdecadal strength of the 550	
  
observed anticorrelation are suggested to be related to changes in ENSO variance 551	
  
(Annamalai et al. 2012b) as well as changes to the	
  lead-­‐lag	
  relationship	
  between	
  ENSO	
  552	
  
and	
  June-­‐July	
  and	
  August-­‐September	
  Indian	
  monsoon	
  rainfall	
  (Boschat	
  et	
  al.	
  2012). 553	
  
Using these observed bounds, 11/25 (18/22) CMIP5 (CMIP3) models exhibit a 554	
  
statistically significant AIR-ENSO teleconnection. 555	
  

The spatial pattern of the ENSO-forced rainfall anomalies is obtained from linear 556	
  
regression of JJAS Niño3.4 SST anomalies with JJAS rainfall anomalies (Fig. 10). The 557	
  
regressions are presented for one standard deviation of the Niño3.4 SST anomalies, and 558	
  
thus correspond to rainfall anomalies associated with El Niño. The high-resolution 559	
  
observations over India from Rajeevan et al. (2006) and the GPCP observations show 560	
  
similar characteristics for El Niño conditions. The largest rainfall decreases occur 561	
  
adjacent to the Western Ghats and near the foothills of the Himalayas, with a secondary 562	
  
rainfall deficit over central India, near 78oE, 18oN. Over northeastern India and near the 563	
  
Burmese coast, above-normal rainfall anomalies prevail, and are also seen in CMAP 564	
  
rainfall (not shown). With the strongest AIR-ENSO anticorrelation of the models 565	
  
analyzed (-0.76), the IPSL CM5A-MR simulation exhibits a stronger than observed 566	
  
deficit of rainfall over India, and enhanced rainfall near Burma (Fig. 10c). Additionally, 567	
  
this model has the largest pattern correlation, 0.64, of all models considered herein 568	
  
between the simulated and observed ENSO-forced rainfall anomalies. As seen in Fig. 569	
  
10d, over India, the FGOALS-s2 model has a mixed rainfall signal, with a pattern 570	
  
correlation of only 0.10, and as such an insignificant AIR-ENSO teleconnection (0.11). 571	
  
Furthermore, this model has a strong rainfall enhancement over the Arabian Sea and the 572	
  
Bay of Bengal adjacent to India that is not seen in observations. An evaluation of the 573	
  
ENSO impact on the Asian monsoon in the FGOALS-s2 pre-industrial simulation is 574	
  
given by Wu and Zhou (2012). The CMIP5 MMM has a slightly larger pattern 575	
  
correlation with GPCP (0.62) than does the CMIP3 MMM (0.60), while individual 576	
  
models have larger pattern correlations than the MMM’s (Table 3). Improvement in the 577	
  
CMIP5 MMM is also noted, since it also has larger rainfall anomalies than the CMIP3 578	
  
MMM. However, in both cases the MMM anomalies are weaker than observed due to the 579	
  
wide-range of fidelity in simulating the precipitation teleconnections in the individual 580	
  
models. 581	
  

The skill in representing the AIR-ENSO correlation vs. the pattern correlation of 582	
  
ENSO-forced rainfall anomalies with GPCP observations over 60oE-100oE, 0o-30oN is 583	
  
given in Fig. 9b. For the CMIP5 models there is a better than 1% statistically significant 584	
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relationship between these skill metrics, indicating that the pattern of rainfall anomalies is 585	
  
better represented in models with a stronger anticorrelation between AIR and Niño3.4 586	
  
SST anomalies. Conversely, as expected, models with a near-zero AIR-ENSO correlation 587	
  
have ENSO-forced rainfall anomaly pattern correlations that are not statistically 588	
  
significant. Interestingly, for AIR-ENSO correlations of about -0.3, the rainfall anomaly 589	
  
pattern correlations range from -0.14 to 0.53. This wide-range of skill in representing the 590	
  
rainfall anomaly pattern correlation can be due to many simulation features, such as the 591	
  
location and strength of the ENSO SST anomalies (Krishna Kumar et al. 2006), the 592	
  
spatio-temporal evolution of ENSO diabatic heating anomalies, and the proper 593	
  
seasonality of the AIR-ENSO relationship. As discussed in Annamalai et al. (2007), these 594	
  
interactions conspire to make simulation of the ENSO-monsoon teleconnection a 595	
  
challenge, with only four of the CMIP3 models representing the detailed aspects of this 596	
  
teleconnection. A more detailed diagnosis of the ENSO-monsoon teleconnection in the 597	
  
CMIP5 models is presented in Annamalai et al. (2012b). By examining all the ensemble 598	
  
members for the entire historical simulation period (~1850 to 2005), they note that the 599	
  
timing, amplitude, and spatial extent in the ENSO-monsoon relationship depends on the 600	
  
ability of the models’ to capture the mean monsoon rainfall distribution and the ENSO-601	
  
related SST and diabatic heating anomalies along the equatorial Pacific. They also note 602	
  
that incorrect simulation of regional SST anomalies over the tropical Indian Ocean and 603	
  
west Pacific sectors degrades the ENSO-monsoon association, even if the models capture 604	
  
ENSO realistically. This SST sensitivity is consistent with Lau and Nath (2012), who 605	
  
showed that during El Niño the tropical Pacific SST forcing and the warm SST anomalies 606	
  
in the Indian Ocean have opposing effects on the monsoon development. The role of SST 607	
  
errors over the Indian Ocean was investigated by Achuthavarier et al. (2012) using the 608	
  
NCEP Coupled Forecast System Model. They found that unrealistic early development of 609	
  
the Indian Ocean dipole prevents the Pacific ENSO signal from impacting the monsoon, 610	
  
and results in the inability of the model to generate the observed negative correlation of 611	
  
the ENSO-monsoon relationship. Thus, there are many critical factors for simulating a 612	
  
realistic ENSO-monsoon teleconnection, including indirect affects due to preceding 613	
  
boreal winter ENSO development (Wu et al. 2012). 614	
  
 615	
  
5.2 East Asian Summer Monsoon 616	
  
 617	
  
The East Asian summer monsoon (EASM) is a complicated region in that there are many 618	
  
competing mechanisms by which the monsoon is modulated. Influences from the Indian 619	
  
Ocean, ENSO, and from the eastern Pacific, plus local air-sea interactions over the South 620	
  
China Sea and interaction of tropical and subtropical circulation systems have been 621	
  
documented (Zhou et al. 2009b; Zhou et al. 2011). Thus, there are many observational 622	
  
metrics to assess model performance (Zhou and Li 2002; Chen et al. 2010; Boo et al. 623	
  
2011), and a plethora of indexes for measuring the strength of the EASM. As discussed in 624	
  
Wang et al. (2008) the indexes fall broadly into five categories related to (1) East-West 625	
  
thermal contrast, (2) North-South thermal contrast, (3) wind shear vorticity, (4) southwest 626	
  
monsoon, and (5) South China Sea. In an effort to provide a unified approach to 627	
  
measuring the strength of the East Asian summer monsoon, Wang et al. (2008) have 628	
  
performed a multivariate Empirical Orthogonal Function (EOF) analysis using 629	
  
precipitation, sea-level pressure, and the zonal and meridional winds at 850hPa and 630	
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200hPa using JJA anomalies over the domain 100oE-140oE, 0o-50oN for 1979-2006. The 631	
  
leading mode, which is not related to the developing phase of ENSO, is characterized by 632	
  
enhanced precipitation along the East Asian subtropical front associated with interannual 633	
  
variations of the Meiyu/Baiu/Changma rainband. These authors found that the principal 634	
  
component (PC) of this leading mode had a correlation of -0.97 with JJA anomalies of 635	
  
the zonal wind shear index of Wang and Fan (1999), the strongest correlation among the 636	
  
25 East Asian monsoon indexes considered in their paper. Thus, as a simple East Asian 637	
  
summer monsoon index for validating the CMIP5 and CMIP3 models we adopt the 638	
  
negative of the Wang and Fan (1999) zonal wind shear index: 639	
  
 640	
  
WFN = (U850; 110oE-140oE, 22.5oN-32.5oN) minus (U850; 90oE-130oE, 5oN-15oN) 641	
  
 642	
  

Figure 11a shows the regression of the WFN from JRA25 reanalysis with JJA 643	
  
anomalies of GPCP rainfall and JRA25 850hPa wind for 1979-2007. These rainfall and 644	
  
wind anomalies are consistent with the multivariate EOF anomalies presented in Figures 645	
  
2a and 5a of Wang et al. (2008). Furthermore, pattern correlations of these anomalies 646	
  
with those derived from CMAP and NCEP/NCAR reanalysis are 0.99 and 0.96, 647	
  
respectively (Table 3), indicating that these features are robust characteristics of East 648	
  
Asian summer monsoon variability. 649	
  

For both CMIP5 and CMIP3, the MMM’s are equally adept at representing the wind 650	
  
anomalies (Figs. 11b and 11c), with CMIP5 being superior to CMIP3 in representing the 651	
  
pattern of rainfall anomalies, especially the deficit rainfall adjacent to the west coast of 652	
  
the Philippines. The MMM are poor in representing the rainfall maxima that extends 653	
  
from central China to Southwest Japan. Additionally, the MMM rainfall anomalies are 654	
  
smaller than observed or simulated by individual models; a feature also noted for the 655	
  
ENSO forced rainfall anomalies over the Indian sector (Figs. 10e and 10f). Figures 11d 656	
  
and 11e show the anomalies for models that have the largest and smallest 850hPa wind 657	
  
anomaly pattern correlations compared to JRA25. In gfdl cm2.0 the 850hPa pattern 658	
  
correlation is nearly identical to that of the MMM, while the pattern correlation of the 659	
  
precipitation anomalies is smaller. iap fgoals-g1.0 has enhanced rainfall near 30oN with 660	
  
below normal rainfall to the south, though the details of the observed spatial pattern are 661	
  
not well represented. Furthermore, the relationship of the enhanced rainfall to the western 662	
  
Pacific subtropical high and anti-cyclonic 850hPa wind anomalies are not properly 663	
  
represented. Rather, the enhanced rainfall is associated with strong cyclonic wind 664	
  
anomalies near 40oN, with a possible contribution of moisture from the westerly 665	
  
monsoon flow over Southeast Asia. This bias is related to the weak western Pacific 666	
  
summer monsoon and deficient rainfall surrounding the Philippines in the atmospheric 667	
  
model component of iap fgoals-g1.0 (Liu et al. 2011). HadGEM2-ES has the largest 668	
  
rainfall pattern correlation of the models analyzed, with an excellent representation of the 669	
  
rainfall minima adjacent to the west coast of the Philippines, and the maxima over 670	
  
southeast China and southwest Japan (Fig. 11f). INM CM4 has a weak signal in the 671	
  
850hPa wind anomalies, indicating that the simulated subtropical high is not modulating 672	
  
the flow as strongly as observed. As a consequence the rainfall is not modulated as 673	
  
observed. 674	
  

The skill assessment of the ability of the models to simulate East Asian monsoon 675	
  
patterns of rainfall and 850hPa wind anomalies over 100oE-140oE, 0o-50oN is presented 676	
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in Fig. 12. For both CMIP5 and CMIP3 the 850hPa wind anomalies are better simulated 677	
  
than the rainfall anomalies (Fig. 12a), consistent with the CMIP3 analysis of Boo et al. 678	
  
(2011). The CMIP5 MMM rainfall anomalies and 850hPa wind anomalies have larger 679	
  
pattern correlations relative to those from the CMIP3 MMM. For both sets of models 680	
  
there is a better than 5% significant relationship of a correspondence between the quality 681	
  
of the 850hPa wind anomalies and the rainfall anomalies. As seen in Figs. 12b and 12c 682	
  
for 850hPa wind and rainfall, respectively, there is no relationship between the quality of 683	
  
the interannual variability and the climatology over the East Asian region. Interestingly, 684	
  
the interannual variability of the 850hPa wind anomalies is better represented than the 685	
  
wind climatology for all but 3 models (Fig. 12b), while for the majority of models the 686	
  
rainfall climatology is better represented than the interannual variability (Fig. 12c). A 687	
  
reasonable representation of climate mean monsoon rain band over East Asia relies 688	
  
heavily on convection parameterization (Chen et al. 2010). 689	
  

The analysis of the interannual variability of the Asian summer monsoon indicates 690	
  
that there is a wide-range of performance among the models, with substantial scope for 691	
  
model improvement in the simulation of the rainfall anomalies. A summary of the ability 692	
  
of the models to simulate the interannual variability of rainfall for the Indian summer 693	
  
monsoon and the East Asian monsoon is given in Fig. 12d. Relative to GPCP rainfall, it 694	
  
shows the pattern correlations of the interannual rainfall anomalies over the East Asian 695	
  
Summer Monsoon domain (also see Figs. 11, 12a, and 12c) are better simulated than the 696	
  
pattern correlations of the interannual rainfall anomalies over the Indian Monsoon 697	
  
domain (also see Figs. 9b and 10). The lack of a statistical relationship between the 698	
  
interannual variations over these regions confirms that the controlling mechanisms are 699	
  
distinct for the two regions, and that progress in modeling monsoon interannual 700	
  
variability requires fidelity in representing a wide variety of processes. 701	
  
 702	
  
 703	
  
6 Boreal Summer Intraseasonal Variability 704	
  
 705	
  
BSISV of the monsoon is the dominant modulator of convection over the Asian domain, 706	
  
and it has been shown to contribute to interannual variability of the monsoon (Sperber et 707	
  
al. 2000). Where the environment is favorable for convection over a broad region, 708	
  
embedded features, such as tropical depressions and typhoons, are important contributors 709	
  
to total seasonal rainfall. On modeling intraseasonal time scales, Sperber and Annamalai 710	
  
(2008) found that only 2 of 17 CMIP3 and CMIP2+ models analyzed could represent the 711	
  
life cycle of the leading mode of 30-50 day BSISV. Lin et al. (2008) found that the 12-24 712	
  
day mode was better represented than the BSISV in CMIP3. Even so, the BSISV 713	
  
simulation in the CMIP3 models was a marked improvement compared to the previous 714	
  
generation of models (Waliser et al. 2003). 715	
  

Following the analysis of the CMIP3 models by Sperber and Annamalai (2008), the 716	
  
BSISV is characterized by 20-100 day bandpass filtered variance, and by evaluation of 717	
  
the models ability to simulate the spatio-temporal evolution of the leading 718	
  
Cyclostationary EOF (CsEOF) of filtered OLR that was described in Annamalai and 719	
  
Sperber (2005). Due to limited availability of daily data, 16 CMIP5 models and 15 720	
  
CMIP3 are analyzed herein. Given the CMIP3 analysis of Sperber and Annamalai (2008), 721	
  
we predominantly concentrate on the performance of the CMIP5 models herein. 722	
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The 20-100 day bandpass filtered variance from observations and models is shown in 723	
  
Figs. 13a-f. The MPI ESM-LR model (Fig. 13b), with a pattern correlation of 0.87 724	
  
relative to the AVHRR OLR (Fig. 13a), has the best representation of the variance pattern 725	
  
of the models considered (Table 3). Consistent with previous MPI models, it has skillful 726	
  
performance for this baseline intraseasonal diagnostic. Importantly, the CMIP5 model 727	
  
version has a more realistic amplitude of OLR variance, which in previous versions was 728	
  
substantially overestimated. Additional improvement is with respect to the partitioning of 729	
  
variance between the continental longitudes (~15oN-20oN) and the smaller values over 730	
  
the near-equatorial Indian Ocean. Of the CMIP5 models, the MIROC-ESM model has the 731	
  
smallest pattern correlation with observations, 0.55. It exhibits pockets of strong 732	
  
intraseasonal variability with a pronounced variance minimum near 10oN over the Indian 733	
  
Ocean that unrealistically separates the variance maxima over the continental latitudes 734	
  
(~20oN) and the near-equatorial region (Fig. 13c). The MIROC5 model, which will be 735	
  
discussed in more detail below, has intermediate skill, with a pattern correlation of 0.81 736	
  
(Fig. 13d). The CMIP5 MMM, Fig. 13e, has larger skill than the best model and the 737	
  
CMIP3 MMM (Fig. 13f and Table 3). Furthermore, the magnitude of the intraseasonal 738	
  
variance in the CMIP5 MMM is more realistic than that from the CMIP3 MMM. 739	
  

The observed BSISV life cycle is presented in Fig. 14. The 20-100 day bandpass 740	
  
filtered OLR anomalies for JJAS 1979-2007 are projected on to the Day 0 CsEOF pattern 741	
  
of Annamalai and Sperber (2005). Using lag regression, the resulting PC (referred to as 742	
  
PC-4 in Sperber and Annamalai 2008) is regressed back onto the filtered OLR to obtain 743	
  
the spatio-temporal evolution of the BSISV. As in Sperber and Annamalai (2008), 744	
  
projection of the model 20-100 day bandpass filtered OLR onto the observed Day 0 745	
  
CsEOF pattern ensures that the models are analyzed using a uniform approach, which 746	
  
addresses the question: How well do the models simulate the observed BSISV? The 747	
  
observed results in Fig. 14 are plotted where the regressions are statistically significant, 748	
  
assuming every pentad is independent. As seen in Fig. 14a and 14b, the enhanced 749	
  
convection first begins near the east coast of equatorial Africa, and extends into the 750	
  
western Indian Ocean. Over the central and eastern Indian Ocean suppressed convection 751	
  
dominates. From Day -5 through Day 0, Figs. 14c and 14d, the enhanced convection over 752	
  
the Indian Ocean amplifies and extends eastward to the Maritime Continent, while a tilted 753	
  
band of suppressed convection dominates to the north, extending from the Arabian Sea to 754	
  
the western Pacific. By Day 5, Fig. 14e, the enhanced convection bifurcates near the 755	
  
equator over the Indian Ocean, with the strongest convective anomalies extending 756	
  
southeastward from the Arabian Sea and India to New Guinea. At this time the 757	
  
suppressed convection dominates over the western Pacific near 15oN. By Day 10, Fig. 758	
  
14f, the northwest to southeast tilted region of enhanced convection extends from the 759	
  
Arabian Sea to the equatorial central Pacific. This structure arises due to northward 760	
  
propagation of convective anomalies in the vicinity of the Indian longitudes, as the 761	
  
equatorial convective anomalies propagate eastward from the Indian Ocean to the 762	
  
Maritime Continent/west Pacific. The tilt arises due to the favorable vertical wind shear 763	
  
and the shedding of Rossby waves over this domain during boreal summer (Lau and Peng 764	
  
1990; Wang and Xie 1997; Annamalai and Sperber 2005). Over the west Pacific near 765	
  
15oN the suppressed convection weakens and diminishes in extent. With the development 766	
  
of suppressed convection over the equatorial Indian Ocean there is a quadrapole pattern 767	
  
of convective anomalies that persists through Day 15, Fig. 14g, that then weakens by Day 768	
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20, Fig. 14h. The tilted band of enhanced convection weakens, and the suppressed 769	
  
convection over the Indian Ocean begins to dominate. These stages in the BSISV 770	
  
lifecycle, obtained via regression (the approach needed to analyze the models), compare 771	
  
well with the evolution of the CsEOF’s of Annamalai and Sperber (2005, see their Fig. 772	
  
2), with which they have pattern correlations of 0.83 or larger. 773	
  

The skill of the models in simulating the observed 20-100 bandpass filtered variance 774	
  
and the BSISV lifecycle is presented in Fig. 15. The filtered variance accounts for both 775	
  
standing and propagating components while the BSISV is the leading propagating mode. 776	
  
The skill for the filtered variance is based on the pattern correlation of the model with 777	
  
observations. The model skill of the BSISV life cycle is the space-time pattern correlation 778	
  
of the best matching lag regressions to the Day -15, Day -10, Day -5, Day 0, Day 5, Day 779	
  
10, Day 15, and Day 20 patterns from the observed BSISV CsEOF (Annamalai and 780	
  
Sperber 2005). Data at all gridpoints over the region 40oE-180oE, 30oS-30oN are used for 781	
  
the calculation of the skill scores. The results indicate that at better than the 1% 782	
  
significance level there is a statistically significant relationship between the filtered 783	
  
variance pattern and the BSISV life cycle for both the CMIP5 and CMIP3 models. This 784	
  
suggests that the location and strength of the filtered variance maxima are largely 785	
  
determined by the propagating BSISV. The skill of the CMIP5 MMM is slightly larger 786	
  
than the CMIP3 MMM, and the filtered variance pattern tends to be better simulated than 787	
  
the BSISV life cycle. 788	
  

To facilitate the evaluation of the BSISV life cycle, animations of the BSISV life 789	
  
cycle from the CMIP5 models and observations can be found at: http://www-790	
  
pcmdi.llnl.gov/projects/ken/cmip5_bsisv/index.html, while the animations from the 791	
  
CMIP3 and CMIP2+ models analyzed by Sperber and Annamalai (2008) can be found at: 792	
  
http://www-pcmdi.llnl.gov/projects/ken/. In Sperber and Annamalai (2008), only two 793	
  
models showed appreciable skill at representing the BSISV life cycle, including the 794	
  
northwest to southeast tilted band of enhanced convection. Both coupled models were 795	
  
Max Planck Institute derived models that used the same atmospheric model (European 796	
  
Centre Hamburg-4; ECHAM4). In CMIP5, the MIROC5 model has the largest space-797	
  
time correlation of the BSISV life cycle with observations (0.69). As seen in Fig. 16, the 798	
  
BSISV life cycle of the MIROC5 model exhibits many of the observed features seen in 799	
  
Fig. 14, especially the strongly suppressed convection over the Indian Ocean on Day -15 800	
  
(Fig. 16a). It also represents well the amplification and eastward propagation of enhanced 801	
  
convection over the equatorial Indian Ocean and the tilted band of suppressed convection 802	
  
to the north from Day -10 through Day 0 (Figs. 16b-16d). The bifurcation of enhanced 803	
  
convection over the central/eastern Indian Ocean is seen on Day 5 (Fig. 16e), though the 804	
  
strongest anomalies are incorrectly located south of the equator. Although present from 805	
  
Day 10 through Day 20 (Figs. 16f-16h), the tilted region of enhanced convection is not as 806	
  
spatially contiguous as observed, and the anomalies are weaker than observed. Another 807	
  
shortcoming of the simulation is that the convective anomalies over the western Pacific 808	
  
are not as strong as observed. Even so, the simulation of the BSISV life cycle by 809	
  
MIROC5 is an important step forward, since an atmospheric model with a different 810	
  
formulation from ECHAM4 shows the capability to simulate important aspects of the 811	
  
BSISV life cycle, especially the northwest to southeast tilted band of enhanced 812	
  
convection. Despite using the same convection scheme as ECHAM4, the more recent 813	
  
MPI derived models, MPI-ESM-LR and echam5/mpi-om, do not properly represent the 814	
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tilted band of convection. Subsequent to ECHAM4, replacement and/or changes to the 815	
  
grid-scale condensation scheme and radiation schemes have occurred in the MPI-based 816	
  
models. Since the MJO has been shown to be sensitive to cloud-radiation interaction (Ma 817	
  
and Kuang 2011), it has been suggested that these modifications may account for the 818	
  
reduced skill in simulating MJO in these more recent MPI models (D. Kim, personal 819	
  
communication, 2012).  820	
  

MRI-CGCM3, and to a lesser extent GFDL-ESM2G, also show a tilted region of 821	
  
convection, but the extension into the western equatorial Pacific occurs after the 822	
  
northward propagation reaches 20oN over India and the Bay of Bengal, whereas in 823	
  
observations the eastward extension and northward propagation occur in tandem. Mizuta 824	
  
et al. (2012) suggest that the improvement of the BSISV in the MRI model is due to 825	
  
modification of the convection scheme, which allows for higher levels of convective 826	
  
available potential energy to build-up before the instability is released. Rectifying model 827	
  
errors, including those related to SST and tropospheric temperature over the Indian 828	
  
Ocean, may result in a more realistic representation of the northward propagation of the 829	
  
BSISV, and consequently the interannual variability of the Indian monsoon (Joseph et al. 830	
  
2012). Excepting those CMIP5 models that have westward propagation over the 831	
  
equatorial Indian Ocean, FGOALS-s2 and NorESM1-M, the majority of models have 832	
  
difficulty in getting the enhanced equatorial convection to propagate into the western 833	
  
Pacific, consistent with the CMIP3 results of Sperber and Annamalai (2008). 834	
  

Given the wide-range of model performance in representing the BSISV life cycle, it 835	
  
was surprising to find that the CMIP5 and CMIP3 MMM’s were more skillful than the 836	
  
individual models. The life cycle of the CMIP5 MMM is shown in Fig. 17. In an effort to 837	
  
show statistical significance, the averages at each gridpoint were calculated if more than 838	
  
half of the models had a statistically significant convective anomaly (irrespective of sign) 839	
  
at that time lag. As such, the anomalies are slightly larger than those from the “true” 840	
  
MMM used for the skill score calculation in Fig. 15, in which the arithmetic mean of all 841	
  
models was taken at each gridpoint, at each time lag. With the exception of representing 842	
  
the tilted band of suppressed convection that is observed on Day -10 (compare Fig. 17b 843	
  
with Fig. 14b), the CMIP5 MMM represents the major aspects of the life cycle of the 844	
  
BSISV. Furthermore, compared to MIROC5, the CMIP5 MMM better represents the 845	
  
spatial extent and magnitude of the convective anomalies over the western Pacific 846	
  
(compare Figs. 17c-17h with Figs. 16c-16h). These astounding results suggest the 847	
  
potential for making skillful multi-model forecasts of the BSISV. 848	
  

Future work on the BSISV will include a more detailed evaluation to assess if the 849	
  
physical processes involved are consistent between the observations and the most skillful 850	
  
models, to evaluate the impact of climate change on the BSISV, and explore the 851	
  
usefulness of the MMM in this regard. 852	
  
 853	
  
 854	
  
7 Discussion and Conclusions 855	
  
 856	
  
The CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team selected the 857	
  
diagnostics presented herein. These diagnostics provide a broad overview of the state-of-858	
  
the-art in simulating boreal summer Asian monsoon as of 2011. The most important take 859	
  
away message is that in terms of the MMM, the CMIP5 models outperform the CMIP3 860	
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models for all of the diagnostics. While the CMIP5 MMM gains in terms of the skill 861	
  
scores are incremental, additional supporting evidence is noted, such as the improved 862	
  
amplitude of precipitation in the CMIP5 MMM relative to the CMIP3 MMM. Even so, 863	
  
there are systematic errors that are consistent between the two vintages of models. For 864	
  
example, the time mean rainfall error has a consistent pattern between CMIP5 and 865	
  
CMIP3 (Figs. 1i and 1j), though the amplitude of the error is smaller in CMIP5 relative to 866	
  
CMIP3. Part of the error reduction is the better simulation of the precipitation maxima in 867	
  
the vicinity of steep orography. Other systematic errors that are common to both sets of 868	
  
models include (1) late monsoon onset over India and poor representation of the annual 869	
  
cycle of the Indian monsoon and oceanic rainfall bands, (2) the monsoon domain not 870	
  
extending far enough north over China, Korea, and Japan, and (3) the monsoon domain 871	
  
extending too far to the east over the Pacific Ocean (Figs. 6a-6e). For the time mean state 872	
  
and the interannual variability over East Asia, the 850hPa wind is better simulated than 873	
  
the precipitation (Figs. 3 and 12a). On intraseasonal time scales, changes to convective 874	
  
parameterizations have contributed to new models representing important aspects of the 875	
  
BSISV (Mizuta et al. 2012). The MIROC5 model (Watanabe et al. 2010) provides a 876	
  
credible simulation of the leading mode of the BSISV (Fig. 16). This is an important 877	
  
advance, since heretofore only ECHAM4-based models showed similar capability 878	
  
(Sperber and Annamalai 2008). Despite the poor representation of the BSISV in most of 879	
  
the models, especially seen in the animations, the CMIP5 MMM outperforms the 880	
  
individual models (Figs. 15 and 17). This suggests that a multi-model approach to 881	
  
forecasting the BSISV might be fruitful. 882	
  

Given that the aim of this paper has been a comparison of CMIP5 relative to CMIP3, 883	
  
we have taken the basic approach of generating MMMs using all models (with the 884	
  
exception of the monsoon domain extent [Fig. 6] and the BSISV [Fig. 17]), even though 885	
  
in some cases individual institutions have made multiple submissions with slightly 886	
  
different model versions. More exhaustive approaches to assessing model independence 887	
  
and weighting can be applied (Mason and Knutti 2011), but this is beyond the scope of 888	
  
this overview. Furthermore, skill for some phenomena, such as the relationship between 889	
  
AIR and ENSO and the impact of climate change on this teleconnection, requires the 890	
  
joint assessment of multiple facets of model performance, including the climatology of 891	
  
rainfall over India, and the fidelity with which ENSO is simulated (Annamalai et al. 892	
  
2007, 2012b). However, for assessing larger scale impacts, incorporating model quality 893	
  
information using parametric and non-parametric weighting approaches based on mean 894	
  
state, annual cycle, and El Niño variability has been shown to NOT affect conclusions in 895	
  
climate detection and attribution studies (Santer et al. 2009). Thus, there is no unique best 896	
  
approach to generating MMMs. We suggest that the skill scores presented herein be used 897	
  
as a starting point for selecting subsets of models for more in-depth analysis of boreal 898	
  
summer Asian monsoon phenomena. Furthermore, given the overlap of skill between 899	
  
individual CMIP5 and CMIP3 models, it is suggested that the CMIP5 and CMIP3 models 900	
  
be viewed as a joint resource for investigating processes and climate change impacts, 901	
  
rather than dismissing the CMIP3 models simply because they predate the CMIP5 902	
  
models. 903	
  

In the figures we have presented the range of model performance for each of the 904	
  
diagnostics. In many instances, only fractions of a percent separate one model from the 905	
  
next in terms of skill. In an effort to look for consistency in skill, in Tables 2 and 3 we 906	
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have highlighted the five models that have the largest skill scores for each diagnostic. 907	
  
This approach reveals numerous common features: (1) NorESM1-M and CCSM4, which 908	
  
use the same atmospheric model, consistently finish in the top five in 9/14 and 7/12 909	
  
categories, respectively. Both models are top five finishers in simulating the rainfall 910	
  
climatology, and most aspects of the climatological annual cycle of pentad rainfall. The 911	
  
former model also performs consistently well in representing the interannual variability; 912	
  
(2) the MIROC5 and MIROC4h models have complimentary skill in representing the 913	
  
climatological annual cycle of pentad rainfall; (3) the IPSL-CM5a-LR and IPSL-CM5a-914	
  
MR models are top five performers in representing the interannual variability of the 915	
  
Indian monsoon; (4) several of the GFDL models are top five performers in representing 916	
  
the climatology and the interannual variability of the 850hPa wind; and (5) the ECHAM 917	
  
based models tend to have large skill scores on intraseasonal time scales. Given our focus 918	
  
on a limited set of boreal summer Asian monsoon diagnostics, we emphasize that the 919	
  
discussion of skill given in this paper is not necessarily representative of overall model 920	
  
performance. 921	
  

The diagnostics and associated skill estimates presented are not exhaustive in scope, 922	
  
and given the regional complexity of the monsoon (Zhou et al. 2011), there is ample 923	
  
scope for additional analysis of other aspects of monsoon variability and change (e.g. 924	
  
Zhou et al. 2009c; Zhou and Zou 2010; Boo et al. 2011, Li and Zhou 2011; Meehl et al. 925	
  
2012). Furthermore, it is important to more fully diagnose the multitude of processes and 926	
  
interactions that are associated with the different aspects of monsoon variability. 927	
  
Examples of more in-depth questions to address include (1) evaluating the partitioning of 928	
  
rainfall into convective vs. large-scale components, (2) assessing how well the models 929	
  
represent the main rain-bearing synoptic systems, and (3) investigating if there is a 930	
  
relationship between the ability of the models to represent the BSISV and simulate the 931	
  
onset of the monsoon correctly, especially over India where onset is systematically too 932	
  
late. Through such diagnoses, we will gain an improved understanding of model 933	
  
processes and scale interactions. We may also gain confidence that subsets of the models 934	
  
are more reliable for investigating the impact of climate change on the monsoon (e.g. 935	
  
Annamalai et al. 2007, 2012b). The analysis presented here, and for multi-model seasonal 936	
  
forecasts of Indian summer monsoon (Rajeevan et al. 2012), highlight the beneficial 937	
  
impact that parameterization development and increased horizontal resolution have had 938	
  
on the simulation of boreal summer monsoon climate and variability. 939	
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Table Captions 1184	
  
 1185	
  
Table 1: Modeling group, model designation, and horizontal and vertical resolution of the 1186	
  
atmospheric and oceanic models, respectively. Capitalized designations are CMIP5 1187	
  
models, and lower-case designations are CMIP3 models 1188	
  
 1189	
  
Table 2: Skill scores for the June-September climatology and the climatological annual 1190	
  
cycle. The results are given for observations, the MMM’s, and for the CMIP5 and CMIP3 1191	
  
models. The observed skill for precipitation is between GPCP and CMAP, and the skill 1192	
  
for the 850hPa wind (850hPa) is between ERA40 and JRA25. The model pattern 1193	
  
correlations for the precipitation climatology (Pr) are calculated with respect to GPCP 1194	
  
precipitation. For the 850hPa wind climatology (850hPa), the model pattern correlations 1195	
  
are calculated with respect to ERA40 850hPa wind. For the climatologies the skill is 1196	
  
calculated over the region 40oE-160oE, 20oS-50oN. For the time-latitude (T-Lat) 1197	
  
climatological annual cycle of monthly rainfall averaged between 70oE-90oE, the model 1198	
  
pattern correlations are calculated with respect to GPCP precipitation over the region 1199	
  
10oS-30oN, for May-October (see Section 4.1). For the climatological annual cycle of 1200	
  
pentad rainfall, the model pattern correlations are calculated with respect to GPCP 1201	
  
precipitation for the pentads of onset, peak, withdrawal, and duration of the monsoon 1202	
  
over the region 50oE-180oE, 0o-50oN (see Section 4.2). The categorical skill scores, hit 1203	
  
rate and threat score, indicate how well a model represents the spatial domain of the 1204	
  
monsoon, where a value = 1 indicates perfect agreement between model and 1205	
  
observations. Missing table entries occur for models that did not have available data for 1206	
  
analysis. The top five models with the largest skill scores for each diagnostic are 1207	
  
highlighted 1208	
  
 1209	
  
Table 3: Skill scores for the Indian Monsoon and East Asian Monsoon interannual 1210	
  
variability and the boreal summer intraseasonal variability (BSISV). The results are given 1211	
  
for observations, the MMM’s, and for the CMIP5 and CMIP3 models. The interannual 1212	
  
variations of the ENSO-Monsoon relationship are characterized by (1) the lag 0 1213	
  
correlation between JJAS anomalies of all-India rainfall and Niño3.4 SST (AIR/N3.4). 1214	
  
The AIR is for land-only gridpoints over the region 65oE-95oE, 7oN-30oN. The 1215	
  
observations are for the anomalies of Rajeevan rainfall vs. HadISST SST for 1961-1999, 1216	
  
and (2) the pattern correlations of JJAS precipitation anomalies (Pr) obtained from 1217	
  
regression with JJAS anomalies of Niño3.4 SST. The model pattern correlations are 1218	
  
calculated with respect to GPCP anomalies that were obtained by regression with the 1219	
  
Niño3.4 SST anomalies from the NCEP/NCAR reanalysis (1979-2007). The pattern 1220	
  
correlations are calculated over the region 60oE-100oE, 0o-30oN. For observations the 1221	
  
skill is between GPCP and CMAP. For the East Asian Monsoon, the negative of the 1222	
  
June-August Wang and Fan (1999) zonal wind shear index (WFN, see Section 5.2) is 1223	
  
regressed against June-August anomalies of precipitation and 850hPa wind. The model 1224	
  
pattern correlations are calculated with respect to GPCP rainfall anomalies and JRA 1225	
  
850hPa wind anomalies that were obtained by regression with the JRA25 WFN. The 1226	
  
pattern correlations are calculated over the region 100oE-140oE, 0o-50oN. For 1227	
  
observations the skill is between GPCP/JRA25 and CMAP/NCEP-NCAR Reanalysis. 1228	
  
For BSISV, the skill is (1) the pattern correlation of June-September 20-100 day 1229	
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bandpass filtered OLR variance between the model (1961-1999) and AVHRR OLR 1230	
  
(1979-2006). For observations the skill is for AVHRR OLR for 1979-2006 vs. AVHRR 1231	
  
OLR for 1979-1995, and (2) the spatio-temporal correlation of the model BSISV life 1232	
  
cycle vs. that from the observed cyclostationary EOF (CsEOF) analysis of Annamalai 1233	
  
and Sperber (2005). The life cycle of the BSISV is obtained by first projecting 20-100 1234	
  
day filtered OLR from observations (1979-2006) and the models (1961-1999) on to the 1235	
  
Day 0 pattern of the observed CsEOF. The resulting PC is used for lag regression against 1236	
  
the 20-100 day filtered OLR with the spatio-temporal correlation between model and 1237	
  
observation being calculated for Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 1238	
  
15, and Day 20 . The skill scores for the intraseasonal variability are calculated over the 1239	
  
region 40oE-180oE, 30oS-30oN. Missing table entries occur for models that did not have 1240	
  
available data for analysis. The top five models with the largest skill scores for each 1241	
  
diagnostic are highlighted 1242	
  
  1243	
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Table	
  1	
  1244	
  

Modelling Group Model Designation AGCM horizontal/vertical 
resolution 

OGCM horizontal/vertical 
resolution 

Beijing Climate 
Center, China 
Meteorological 
Administration 

BCC-CSM1.1 T42 L26 1o lon x 1.33o lat L40 

Bjerknes Center 
for Climate 
Research 

bccr-bcm2.0 T63 L31 1.5o lon x 0.5o -1.5ocos(lat) L35 

Canadian Centre 
for Climate 
Modelling and 
Analysis 

CanESM2 
cgcm3.1 (t47) 
cgcm3.1 (t63) 

T63 L35 
T47 L31 
T63 L31 

256 x 192 L40 
192 x 96 L29 

256 x 192 L31 

National Center 
for Atmospheric 
Research 

CCSM4 
ccsm3 
pcm1 

1.25o lon x 0.9o lat L26 
T85 L26 
T42 L 18 

1.1o lon x 0.27o-0.54o lat L60 
384 x 288 L32 
384 x 288 L32 

Centre National de 
Recherches 
Meteorologiques/C
entre Europeen de 
Recherche et 
Formation 
Avancees en 
Calcul Scientifique 

CNRM-CM5 
cnrm-cm3 

TL127 L31 
T42 L45 

1o lon x 1o lat L42 
180 x 170 L33 

Commonwealth 
Scientific and 
Industrial 
Research 
Organization in 
collaboration with 
Queensland 
Climate Change 
Centre of 
Excellence 

CSIRO-Mk3.6.0 
csiro-mk3.0 
csiro-mk3.5 

T63 L18 
T63 L18 
T63 L18 

1.875o lon x ~0.9375o lat L31 
1.875 o lon x 0.925 o lat L31 
1.875 o lon x 0.925 o lat L31 

Meteorological 
Institute of the 
University of 
Bonn, 
Meteorological 
Research Institute 
of KMA, and 
Model and Data 
group 

echo-g T30 L19  T42 L20 

LASG, Institute of 
Atmospheric 
Physics, Chinese 
Academy of 
Sciences and 
CESS,Tsinghua 
University 

FGOALS-g2 128 x 60 L26 360 x 196 L30 
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LASG, Institute of 
Atmospheric 
Physics, Chinese 
Academy of 
Sciences 

FGOALS-s2 
fgoals-g1.0 

R42 L26 
T42 L26 

0.5o-1o lon x 0.5o-1o lat L 
1o lon x 1o lat L16 

NOAA 
Geophysical Fluid 
Dynamics 
Laboratory 

GFDL-CM3 
GFDL-ESM2G 
GFDL-ESM2M 

gfdl-cm2.0 
gfdl-cm2.1 

C48 L48 
M45 L24 
M45 L24 
N45 L24 
N45 L24 

360 x 200 L50 
360 x 210 L63 
360 x 200 L50 

1o lon x 0.33o -1o lat L50 
1o lon x 0.33o -1o lat L50 

NASA Goddard 
Institute for Space 
Studies 

GISS-E2-H 
GISS-E2-R 

giss-aom 

2.5o lon x 2o lat L40 
2.5o lon x 2o lat L40 

90 x 60 L12 

1.25o lon x 1o lat L32 
1o lon x ~1o lat L32 

90 x 60 L16 
Met Office Hadley 
Centre 

HadCM3 
HadGEM2-CC 
HadGEM2-ES 
ukmo-hadcm3 

ukmo-hadgem1 

N48 L19 
N96 L60 
N96 L38 

2.5o lon x 3.75o lat L19 
N96 L38 

1.25o lon x 1.25o lat L20 
1o lon x 0.3o-1.0o lat L40 
1o lon x 0.3o-1.0o lat L40 
1.25o lon x 1.25o lat L20 

1o lonn x 0.3o-1.0o lat L40 
Instituto Nazionale 
di Geofisica e 
Volcanologia 

ingv-sxg T106 L19 1o lon x 1o lat L31 

Institute for 
Numerical 
Mathematics 

INM-CM4 
inm-cm3.0 

2o lon x 1.5o lat L21 
5o lon x 4o lat L21 

1o lon x 0.5o lat L40 
2.5o lon x 2o lat L33 

Institut Pierre-
Simon Laplace 

IPSL-CM5A-LR 
IPSL-CM5A-MR 

ipsl-cm4 

96 x 95 L39 
144 x 143 L39 

96 x 72 L19 

2o lon x 2o lat L31 
2o lon x 2o lat L31 
2o lon x 2o lat L31 

Japan Agency for 
Marine-Earth 
Science and 
Technology, 
Atmosphere and 
Ocean Research 
Institute (The 
University of 
Tokyo), and 
National Institute 
for Environmental 
Studies 

MIROC-ESM 
MIROC-ESM-CHEM 

T42 L80 
T42 L80 

256 x 192 L44 
256 x 192 L44 

Atmosphere and 
Ocean Research 
Institute (The 
University of 
Tokyo), National 
Institute for 
Environmental 
Studies, and Japan 
Agency for 
Marine-Earth 
Science and 
Technology 

MIROC4h 
MIROC5  

miroc3.2(hires) 
miroc3.2(medres) 

T213 L56 
T85 L40 

T106 L56 
T42 L20 

1280 x 912 L48 
256 x 224 L50 

 T106 L48 
256 x 192 L44 

Max Planck 
Institute for 
Meteorology 

MPI-ESM-LR 
echam5/mpi-om 

T63 L47 
T63 L32 

GR15 L40 
1o lon x 1o lat L42 
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Meteorological 
Research Institute 

MRI-CGCM3 
mri-cgcm2.3.2 

TL159 L48 
T42 L30 

1o lon x 0.5o lat L51 
256 x 192 L44 

Norwegian 
Climate Centre 

NorESM1-M 144 x 96 L26 384 x 320 L53 

	
   	
  1245	
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Table	
  2	
  1246	
  

Model Climatology Climatological Annual Cycle Rainfall 
 Pr 850hPa T-Lat Onset Peak Withd. Duration Hit Rate Threat 
Observations 0.927 0.986 0.887 0.748 0.834 0.830 0.671 0.893 0.744 
CMIP5 MMM 0.898 0.976 0.674 0.664 0.786 0.792 0.605 0.844 0.625 
CMIP3 MMM 0.865 0.967 0.657 0.510 0.733 0.712 0.380 0.821 0.573 
BCC-CSM-1 0.808 0.928 0.338       
bccr-bcm2.0 0.733 0.933 0.639       
CanESM2 0.815 0.951 0.552 0.298 0.451 0.543 0.164 0.782 0.517 
cgcm3.1 (t47) 0.782 0.935 0.465 0.063 0.476 0.454 0.109 0.766 0.522 
cgcm3.1 (t63) 0.796 0.944 0.461 0.155 0.432 0.384 0.154 0.758 0.508 
CCSM4 0.849 0.952 0.678 0.581 0.717 0.798 0.570 0.836 0.619 
ccsm3 0.748 0.913 0.390 0.394 0.481 0.459 0.346 0.757 0.487 
pcm1 0.634 0.793 0.364       
CNRM-CM5 0.852 0.974 0.567 0.674 0.638 0.750 0.656 0.796 0.513 
cnrm-cm3 0.717 0.908 0.763 0.489 0.596 0.633 0.329 0.749 0.437 
CSIRO-Mk3.6.0 0.713 0.896 0.232 0.006 0.451 0.729 0.331 0.762 0.497 
csiro-mk3.0 0.803 0.889 0.385 0.196 0.461 0.601 0.147 0.790 0.495 
csiro-mk3.5 0.796 0.923 0.171 0.287 0.474 0.665 0.350 0.788 0.540 
FGOALS-g2 0.766 0.923 0.455       
FGOALS-s2 0.807 0.916 0.613 0.601 0.596 0.649 0.531 0.812 0.537 
fgoals-g1.0 0.690 0.803 0.587 -0.050 0.672 0.785 0.097 0.770 0.460 
GFDL-CM3 0.844 0.941 0.742 0.458 0.407 0.546 0.406 0.796 0.532 
GFDL-ESM2G 0.821 0.955 0.727 0.370 0.560 0.660 0.328 0.841 0.615 
GFDL-ESM2M 0.828 0.958 0.676 0.490 0.714 0.730 0.383 0.824 0.586 
gfdl-cm2.0 0.826 0.954 0.673 0.715 0.540 0.624 0.495 0.812 0.559 
gfdl-cm2.1 0.843 0.957 0.681 0.453 0.662 0.731 0.485 0.825 0.587 
GISS-E2-H 0.631 0.902 0.318       
GISS-E2-R 0.730 0.912 0.235       
giss-aom 0.780 0.894 0.282 0.359 0.614 0.540 0.203 0.774 0.457 
HadCM3 0.773 0.931 0.550 0.555 0.447 0.519 0.452 0.873 0.675 
HadGEM2-CC 0.795 0.927 0.376 0.526 0.659 0.634 0.317 0.777 0.543 
HadGEM2-ES 0.800 0.933 0.356 0.562 0.620 0.648 0.367 0.769 0.538 
ukmo_hadcm3 0.778 0.932 0.529       
ukmo_hadgem1 0.798 0.938 0.386       
ingv-sxg 0.814 0.950 0.629 0.277 0.575 0.724 0.417 0.797 0.516 
INM-CM4 0.742 0.864 0.561 0.153 0.616 0.649 0.224 0.810 0.560 
inm-cm3.0 0.619 0.837 0.497 -0.125 0.331 0.592 -0.064 0.795 0.517 
IPSL-CM5A-LR 0.797 0.926 0.442 0.399 0.540 0.712 0.482 0.798 0.515 
IPSL-CM5A-MR 0.809 0.935 0.501 0.421 0.575 0.769 0.591 0.787 0.501 
ipsl-cm4 0.743 0.907 0.214 0.215 0.495 0.634 0.254 0.786 0.468 
MIROC-ESM 0.617 0.824 0.518 0.391 0.610 0.666 0.394 0.756 0.434 
MIROC-ESM-CHEM 0.642 0.831 0.538 0.518 0.669 0.653 0.423 0.752 0.433 
MIROC4h 0.802 0.940 0.573 0.674 0.626 0.766 0.620 0.843 0.611 
MIROC5 0.842 0.940 0.778 0.362 0.778 0.851 0.652 0.808 0.531 
miroc3.2(hires) 0.761 0.914 0.523 0.483 0.383 0.709 0.568 0.792 0.486 
miroc3.2(medres) 0.765 0.919 0.513 0.633 0.402 0.571 0.503 0.744 0.384 
MPI-ESM-LR 0.792 0.949 0.664 0.316 0.579 0.652 0.472 0.781 0.535 
echam5/mpi-om 0.800 0.942 0.664 0.265 0.412 0.537 0.337 0.800 0.547 
echo_g 0.803 0.911 0.522 0.008 0.041 0.368 0.189 0.787 0.507 
MRI-CGCM3 0.752 0.886 0.195 0.024 0.619 0.535 -0.014 0.751 0.465 
mri-cgcm2.3.2 0.726 0.885 0.538 0.471 0.345 0.550 0.346 0.746 0.473 
NorESM1-M 0.848 0.913 0.634 0.558 0.723 0.791 0.565 0.838 0.624 
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Model Indian Monsoon East Asian Monsoon BSISV 
 AIR/N3.4 Pr Pr 850hPa Variance Life Cycle 

Observations -0.533 0.798 0.959 0.989 0.995 0.893 
CMIP5 MMM  0.616 0.888 0.972 0.903 0.766 
CMIP3 MMM  0.600 0.799 0.969 0.895 0.754 
BCC-CSM-1 -0.250 -0.140 0.695 0.930   
bccr-bcm2.0 -0.430 0.249 0.670 0.951   
CanESM2 -0.273 0.014 0.672 0.861 0.846 0.651 
cgcm3.1 (t47) -0.335 0.404 0.625 0.899 0.727 0.605 
cgcm3.1 (t63) -0.182 0.173 0.703 0.938 0.717 0.604 
CCSM4 -0.556 0.337 0.789 0.947   
ccsm3 -0.561 0.264 0.722 0.800 0.695 0.588 
pcm1 -0.356 0.293 0.232 0.870   
CNRM-CM5 -0.307 0.245 0.642 0.894   
cnrm-cm3 -0.484 0.419 0.313 0.727 0.570 0.600 
CSIRO-Mk3.6.0 -0.487 0.162 0.346 0.858 0.809 0.645 
csiro-mk3.0 -0.403 -0.112 0.629 0.939 0.830 0.581 
csiro-mk3.5 -0.719 0.137 0.569 0.924   
FGOALS-g2 -0.052 0.238 0.739 0.936   
FGOALS-s2 0.114 0.096 0.787 0.921 0.734 0.608 
fgoals-g1.0 -0.747 0.276 0.415 0.426 0.271 0.438 
GFDL-CM3 -0.442 0.192 0.315 0.867   
GFDL-ESM2G -0.289 0.251 0.458 0.972 0.753 0.643 
GFDL-ESM2M -0.187 0.251 0.606 0.955   
gfdl-cm2.0 -0.667 0.336 0.668 0.976 0.818 0.677 
gfdl-cm2.1 -0.494 0.412 0.390 0.919 0.850 0.712 
GISS-E2-H -0.094 0.254 0.586 0.918   
GISS-E2-R -0.366 0.379 0.656 0.906   
giss-aom 0.094 0.189 0.117 0.754 -0.070 0.395 
HadCM3 -0.299 0.180 0.773 0.897   
HadGEM2-CC -0.335 -0.068 0.787 0.935 0.857 0.641 
HadGEM2-ES -0.344 0.216 0.839 0.949 0.862 0.651 
ukmo-hadcm3 -0.374 0.323 0.758 0.947   
ukmo-hadgem1 -0.446 0.154 0.744 0.912   
ingv-sxg -0.455 0.313 0.513 0.925   
INM-CM4 -0.033 0.110 -0.047 0.816 0.639 0.562 
inm-cm3.0 -0.258 -0.073 0.520 0.850   
IPSL-CM5A-LR -0.700 0.611 0.450 0.708 0.791 0.654 
IPSL-CM5A-MR -0.763 0.636 0.532 0.749 0.827 0.635 
ipsl-cm4 -0.554 0.347 0.675 0.787 0.785 0.648 
MIROC-ESM 0.088 0.061 0.596 0.694 0.548 0.516 
MIROC-ESM-CHEM -0.104 0.045 0.687 0.882 0.554 0.528 
MIROC4h -0.327 0.529 0.723 0.921 0.736 0.625 
MIROC5 -0.321 0.010 0.567 0.946 0.805 0.691 
miroc3.2(hires) 0.080 -0.009 0.643 0.915 0.666 0.543 
miroc3.2(medres) -0.329 0.234 0.719 0.928 0.800 0.575 
MPI-ESM-LR -0.291 0.401 0.283 0.899 0.874 0.681 
echam5/mpi-om -0.573 0.560 0.230 0.817 0.873 0.721 
echo_g -0.554 0.113 0.664 0.914 0.810 0.702 
MRI-CGCM3 -0.274 0.338 0.819 0.937 0.782 0.628 
mri-cgcm2.3.2 -0.424 0.107 0.570 0.931 0.575 0.654 
NorESM1-M -0.690 0.522 0.811 0.959 0.833 0.627 
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Figure Captions 1248	
  
 1249	
  
Fig. 1 a-e JJAS precipitation rate climatology from a GPCP, b CNRM-CM5, c MIROC-1250	
  
ESM, d CMIP5 MMM, and e CMIP3 MMM. Also given in a is the pattern correlation of 1251	
  
GPCP with CMAP, and in b-e are the model pattern correlations with GPCP over the 1252	
  
region 40oE-160oE, 20oS-50oN. f (CMAP) minus (GPCP), g-j as b-e but for (model) 1253	
  
minus (GPCP). The units are (mm day-1). GPCP and CMAP data is from 1979-2007 and 1254	
  
the model data is from 1961-1999 1255	
  
  1256	
  
Fig. 2 a-e JJAS 850hPa wind climatology from a ERA40, b CNRM-CM5, c pcm1, d 1257	
  
CMIP5 MMM, and e CMIP3 MMM. Also given in a is the pattern correlation of ERA40 1258	
  
with JRA25, and in b-e are the model pattern correlations with ERA40 over the region 1259	
  
40oE-160oE, 20oS-50oN. (f) (JRA25) minus (ERA40), g-j as b-e but for (model) minus 1260	
  
(ERA40). The units are (ms-1). ERA40 and the model data are from 1961-1999, and 1261	
  
JRA25 data is from 1979-2007 1262	
  
 1263	
  
Fig. 3 Scatterplot of the pattern correlation with observations of simulated JJAS 850hPa 1264	
  
wind climatology vs. the pattern correlation with observations of simulated JJAS 1265	
  
precipitation climatology. The skill is relative to ERA40 and GPCP over the region 40oE-1266	
  
160oE, 20oS-50oN 1267	
  
  1268	
  
Fig. 4 a-f Annual cycle climatology for rainfall rate averaged between 70oE-90oE from a 1269	
  
GPCP, b CMAP, c MIROC5, d csiro-mk3.5, e CMIP5 MMM, and f CMIP3 MMM. Also 1270	
  
given in b-f is the pattern correlation with GPCP over the region 10oS-30oN, for May-1271	
  
September (the dashed region in a). The units are (mm day-1). g Models stratified by their 1272	
  
pattern correlation with GPCP. GPCP and CMAP data are from 1979-2007 and the model 1273	
  
data is from 1961-1999 1274	
  
 1275	
  
Fig. 5 The relative rainfall rate over the Bay of Bengal (85oE-90oE, 7.5oN-20oN) from 1276	
  
GPCP data. The 5 mm day-1 threshold is used to define the pentads of onset and 1277	
  
withdrawal of the monsoon. To calculate the relative rainfall rate, the pentad time series 1278	
  
is smoothed with a five pentad running mean. The January mean rainfall is then removed 1279	
  
from each pentad, resulting in the relative rainfall rate. See Section 4.2 for more details 1280	
  
 1281	
  
Fig. 6 Monsoon onset pentad a GPCP, b gfdl cm2.0, c inm-cm 3.0, d CMIP5 MMM, and 1282	
  
e CMIP3 MMM. Monsoon peak pentad f GPCP, g MIROC5, h echo-g, i CMIP5 MMM, 1283	
  
and j CMIP3 MMM. Also given in a and f is the pattern correlation of GPCP with 1284	
  
CMAP, and in b-e and g-j are the model pattern correlations with GPCP over the region 1285	
  
50oE-180oE, 0o-50oN. The units are pentad (Pentad 1 = January 1-5). Note the difference 1286	
  
in scale for the onset vs. peak phases. GPCP and CMAP data are from 1979-2007 and the 1287	
  
model data is from 1961-1999 1288	
  
 1289	
  
Fig. 7 Monsoon withdrawal pentad a GPCP, b MIROC5, c echo-g, d CMIP5 MMM, and 1290	
  
e CMIP3 MMM. Monsoon duration f GPCP, g CNRM-CM5, h inm-cm3.0, i CMIP5 1291	
  
MMM, and j CMIP3 MMM. Also given in a and f is the pattern correlation of GPCP 1292	
  
with CMAP, and in b-e and g-j are the model pattern correlations with GPCP over the 1293	
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region 50oE-180oE, 0o-50oN. For withdrawal the units are pentad (Pentad 1 = January 1-1294	
  
5). For duration the units are the number of pentads based on (withdrawal) minus (onset) 1295	
  
pentad. GPCP and CMAP data are from 1979-2007 and the model data is from 1961-1296	
  
1999 1297	
  
 1298	
  
Fig. 8 Scatterplot of the pattern correlation with observations of the simulated pentad of 1299	
  
monsoon onset vs. a the pattern correlation with observations of the simulated pentad of 1300	
  
monsoon peak, b the pattern correlation with observations of the simulated pentad of 1301	
  
monsoon withdrawal, and c the pattern correlation with observations of the simulated 1302	
  
number of pentads of monsoon duration. d Scatterplot of the Monsoon Domain Hit Rate 1303	
  
vs. the Monsoon Domain Threat Score. In a-d the skill is with respect to GPCP for the 1304	
  
region 50oE-180oE, 0o-50oN 1305	
  
 1306	
  
Fig. 9 a The ENSO-monsoon relationship skill is given by the lag 0 correlation between 1307	
  
interannual JJAS anomalies of AIR and Niño3.4 SST. The AIR is for land-only 1308	
  
gridpoints over 65oE-95oE, 7oN-30oN. The results are given for the Rajeevan rainfall data 1309	
  
vs. HadISST SST (1961-1999; black), GPCP rainfall vs. SST used in the NCEP-NCAR 1310	
  
Reanalysis (1979-2007; violet), CMIP5 models (1961-1999; red), and the CMIP3 models 1311	
  
(1961-1999; green). The thick black dashed line is the 5% significance level assuming 1312	
  
each year is independent for 37 degrees of freedom. b The AIR-Niño3.4 SST correlations 1313	
  
in a are plotted vs. the pattern correlations of the interannual JJAS precipitation 1314	
  
anomalies (mm day-1) from linear regression with JJAS Niño3.4 SST anomalies (see Fig. 1315	
  
10). The pattern correlations are calculated with respect to GPCP over the region 60oE-1316	
  
100oE, 0o-30oN 1317	
  
 1318	
  
Fig. 10 Interannual JJAS precipitation anomalies (mm day-1) from linear regression with 1319	
  
JJAS Niño3.4 SST anomalies a Rajeevan rainfall data vs. HadISST SST (1961-1999), b 1320	
  
GPCP rainfall vs. SST used in the NCEP-NCAR Reanalysis (1979-2007), c IPSL-1321	
  
CM5A-MR, d FGOALS-s2, e CMIP5 MMM, and f CMIP3 MMM. The regressions are 1322	
  
scaled by one standard deviation of the Niño3.4 SST anomalies and are thus consistent 1323	
  
with anomalies during El Niño. c and d are the models that span the range of the AIR-1324	
  
Niño3.4 SST correlations from the CMIP5 and CMIP3 models (see Figure 9a). In panels 1325	
  
a-d the first (or only) value is the correlation of AIR-Niño3.4 SST. The last value in b is 1326	
  
the pattern correlation of GPCP with CMAP for the interannual JJAS precipitation 1327	
  
anomalies, and in c-f the last (or only) value is the model pattern correlation with GPCP 1328	
  
for the interannual JJAS precipitation anomalies. The skill metrics are calculated over the 1329	
  
region 60oE-100oE, 0o-30oN. The Rajeevan rainfall, the HadISST SST, and the model 1330	
  
data is for 1961-1999. The GPCP, CMAP and NCEP-NCAR Reanalysis SST data are for 1331	
  
1979-2007 1332	
  
 1333	
  
Fig. 11 Interannual East Asian summer monsoon JJA 850hPa wind anomalies and 1334	
  
precipitation anomalies from linear regression with the revised JJA Wang-Fan 850hPa 1335	
  
zonal wind index for a JRA25/GPCP, b CMIP5 MMM, c CMIP3 MMM, d gfdl cm2.0 1336	
  
model, e fgoals-g1.0, f HadGEM2-ES, and g INM-CM4. d and e are the models with the 1337	
  
largest and smallest 850hPa wind pattern correlations compared to JRA25 850hPa wind 1338	
  
anomalies, and f and g are the models with the largest and smallest precipitation pattern 1339	
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correlations compared to GPCP. Also given in a is the pattern correlation of JRA25 with 1340	
  
NCEP/NCAR Reanalysis and GPCP with CMAP, respectively, and in b-g are the model 1341	
  
pattern correlations with JRA25 and GPCP over the region 100oE-140oE, 0o-50oN. The 1342	
  
units for the 850hPa wind anomalies are ms-1 and for precipitation anomalies the units are 1343	
  
mm day-1. The JRA25 reanalysis, the NCEP-NCAR reanalyses, the GPCP, and CMAP 1344	
  
data are for 1979-2007. The model data is for 1961-1999 1345	
  
 1346	
  
Fig. 12 a Scatterplot of the pattern correlation with observations of simulated JJA 850hPa 1347	
  
wind anomalies vs. the pattern correlation with observations of simulated JJA 1348	
  
precipitation anomalies over East Asia. The skill is relative to JRA25 and GPCP over the 1349	
  
region 100oE-140oE, 0o-50oN. b Scatterplot of the pattern correlation with observations of 1350	
  
simulated JJA 850hPa wind anomalies vs. the pattern correlation with observations of the 1351	
  
simulated JJA 850hPa wind climatology. The skill is with respect to JRA25 on the x-axis, 1352	
  
and with respect to ERA40 on the y-axis. c Scatterplot of the pattern correlation with 1353	
  
GPCP of simulated JJA precipitation anomalies vs. the pattern correlation with 1354	
  
observations of the simulated JJA precipitation climatology. d Scatterplot of the pattern 1355	
  
correlation with GPCP of simulated JJA precipitation anomalies over the East Asia (as in 1356	
  
Figs. 12a and 12c) vs. the pattern correlation with GPCP of simulated JJAS precipitation 1357	
  
anomalies over the Indian Summer Monsoon (as in Fig. 9b) 1358	
  
 1359	
  
Fig. 13 20-100 day bandpass filtered OLR variance for JJAS from a AVHRR (1979-1360	
  
2006), b MPI-ESM-LR, c MIROC-ESM, d MIROC5, e CMIP5 MMM, and f CMIP3 1361	
  
MMM. Also given in a is the pattern correlation with AVHRR OLR for 1979-1995, and 1362	
  
in b-f are the model pattern correlations with AVHRR OLR (1979-2006) over the region 1363	
  
40oE-180oE, 30oS-30oN. The model data is for 1961-1999 1364	
  
 1365	
  
Fig. 14 Lag regression of 20-100 day bandpass filtered AVHRR OLR with PC-4 for 1366	
  
JJAS 1979-2006 for a Day -15 to h Day 20. The lag regressions have been scaled by one 1367	
  
standard deviation of PC-4 to give units of W m-2. The pattern correlations are calculated 1368	
  
with respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of 1369	
  
the CsEOF of Annamalai and Sperber (2005) over the region 40oE-180oE, 30oS-30oN. 1370	
  
Data are plotted where the regressions are statistically significant at the 5% level, 1371	
  
assuming each pentad is independent 1372	
  
 1373	
  
Fig. 15 Scatterplot of the pattern correlation with observations of the simulated JJAS 20-1374	
  
100 day bandpass filtered OLR variance vs. the space-time pattern correlation with 1375	
  
observations of the simulated JJAS BSISV life-cycle. For the variance, the observed and 1376	
  
simulated skill is calculated with respect to AVHRR OLR for JJAS 1979-2006. The 1377	
  
observed variance skill is calculated using the JJAS 20-100 day bandpass filtered OLR 1378	
  
variance for 1979-1995. For BSISV, the skill is for the models best matching patterns 1379	
  
with respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of 1380	
  
the CsEOF given in Annamalai and Sperber (2005). The observed (1979-2006) and 1381	
  
simulated BSISV life-cycle is recovered from linear regression with PC-4 obtained by 1382	
  
projecting 20-100 day bandpass filtered OLR onto the Day 0 CsEOF pattern from 1383	
  
Annamalai and Sperber (2005). The skill scores are calculated over the region 40oE-1384	
  
180oE, 30oS-30oN 1385	
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 1386	
  
Fig. 16 As Fig. 14, but for MIROC5 20-100 day bandpass filtered JJAS OLR (1961-1387	
  
1999) 1388	
  
 1389	
  
Fig. 17 As Fig. 14, but for the CMIP5 MMM. For each time lag, and at each gridpoint, 1390	
  
the average anomaly is plotted if more than half of the models have a statistically 1391	
  
significant convective anomaly, irrespective of sign 1392	
  
 1393	
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Fig. 1 a-e JJAS precipitation rate climatology from a GPCP, b CNRM-CM5, c MIROC-ESM, d CMIP5 
MMM, and e CMIP3 MMM. Also given in a is the pattern correlation of GPCP with CMAP, and in b-e are 
the model pattern correlations with GPCP over the region 40oE-160oE, 20oS-50oN. f (CMAP) minus (GPCP), 
g-j as b-e but for (model) minus (GPCP). The units are (mm day-1). GPCP and CMAP data is from 
1979-2007 and the model data is from 1961-1999 

d) CMIP5 MMM 0.90 

c) MIROC-ESM 0.62 

b) CNRM-CM5 0.85 

a) GPCP (1979-2007) 0.93 

e) CMIP3 MMM 0.86 

i) CMIP5 MMM – GPCP 

h) MIROC-ESM – GPCP 

g) CNRM-CM5 – GPCP 

f) CMAP – GPCP (1979-2007) 

j) CMIP3 MMM – GPCP 
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Fig. 2 a-e JJAS 850hPa wind climatology from a ERA40, b CNRM-CM5, c pcm1, d CMIP5 MMM, and e 
CMIP3 MMM. Also given in a is the pattern correlation of ERA40 with JRA25, and in b-e are the model 
pattern correlations with ERA40 over the region 40oE-160oE, 20oS-50oN. (f) (JRA25) minus (ERA40), g-j as 
b-e but for (model) minus (ERA40). The units are (ms-1). ERA40 and the model data are from 1961-1999, 
and JRA25 data is from 1979-2007 

d) CMIP5 MMM 0.98 

c) pcm1 0.79 

b) CNRM-CM5 0.97 

a) ERA40 (1961-1999) 0.99 

e) CMIP3 MMM 0.97 

i) CMIP5 MMM – ERA40 

h) pcm1 – ERA40 

g) CNRM-CM5 – ERA40 

f) JRA25 – ERA40 

j) CMIP3 MMM – ERA40 
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Fig. 3 Scatterplot of the pattern correlation with observations of simulated JJAS 850hPa wind climatology 
vs. the pattern correlation with observations of simulated JJAS precipitation climatology. The skill is relative 
to ERA40 and GPCP over the region 40oE-160oE, 20oS-50oN 
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Fig. 4 a-f Annual cycle climatology for rainfall rate averaged between 70oE-90oE from a GPCP, b CMAP, c 
MIROC5, d csiro-mk3.5, e CMIP5 MMM, and f CMIP3 MMM. Also given in b-f is the pattern correlation 
with GPCP over the region 10oS-30oN, for May-September (the dashed region in a). The units are (mm 
day-1). g Models stratified by their pattern correlation with GPCP. GPCP and CMAP data are from 
1979-2007 and the model data is from 1961-1999 

g)  

e) CMIP5 MMM 0.67 

c) MIROC5 0.78 

a) GPCP (1979-2007) 0.89 

f) CMIP3 MMM 

d) csiro-mk3.5 

b) CMAP (1979-2007) 

0.17 

0.66 



Fig. 5 The relative rainfall rate over the Bay of Bengal (85oE-90oE, 7.5oN-20oN) from GPCP data. The 5 mm 
day-1 threshold is used to define the pentads of onset and withdrawal of the monsoon. To calculate the 
relative rainfall rate, the pentad time series is smoothed with a five pentad running mean. The January mean 
rainfall is then removed from each pentad, resulting in the relative rainfall rate. See Section 4.2 for more 
details  
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Fig. 6 Monsoon onset pentad a GPCP, b gfdl cm2.0, c inm-cm 3.0, d CMIP5 MMM, and e CMIP3 
MMM. Monsoon peak pentad f GPCP, g MIROC5, h echo-g, i CMIP5 MMM, and j CMIP3 MMM. 
Also given in a and f is the pattern correlation of GPCP with CMAP, and in b-e and g-j are the model 
pattern correlations with GPCP over the region 50oE-180oE, 0o-50oN. The units are pentad (Pentad 1 = 
January 1-5). Note the difference in scale for the onset vs. peak phases. GPCP and CMAP data are from 
1979-2007 and the model data is from 1961-1999 
	
  

d) CMIP5 MMM 0.66 

c) inm-cm3.0 -0.13 

b) gfdl cm2.0 0.72 

a) GPCP (1979-2007) 0.75 

e) CMIP3 MMM 0.51 

i) CMIP5 MMM 0.79 

h) echo-g 0.04 

g) MIROC5 0.78 

f) GPCP (1979-2007) 0.83 

j) CMIP3 MMM 0.73 
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Fig. 7 Monsoon withdrawal pentad a GPCP, b MIROC5, c echo-g, d CMIP5 MMM, and e CMIP3 MMM. 
Monsoon duration f GPCP, g CNRM-CM5, h inm cm3.0, i CMIP5 MMM, and j CMIP3 MMM. Also given 
in a and f is the pattern correlation of GPCP with CMAP, and in b-e and g-j are the model pattern 
correlations with GPCP over the region 50oE-180oE, 0o-50oN. For withdrawal the units are pentad (Pentad 1 
= January 1-5). For duration the units are the number of pentads based on (withdrawal) minus (onset) pentad. 
GPCP and CMAP data are from 1979-2007 and the model data is from 1961-1999 
	
  

d) CMIP5 MMM 0.79 

c) echo-g 0.37 

b) MIROC5 0.85 

a) GPCP (1979-2007) 0.83 

e) CMIP3 MMM 0.71 

i) CMIP5 MMM 0.60 

h) inm-cm3.0 -0.06 

g) CNRM-CM5 0.66 

f) GPCP (1979-2007) 0.67 

j) CMIP3 MMM 0.38 
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Fig. 8 Scatterplot of the pattern correlation with observations of the simulated pentad of monsoon onset vs. a 
the pattern correlation with observations of the simulated pentad of monsoon peak, b the pattern correlation 
with observations of the simulated pentad of monsoon withdrawal, and c the pattern correlation with 
observations of the simulated number of pentads of monsoon duration. d Scatterplot of the Monsoon Domain 
Hit Rate vs. the Monsoon Domain Threat Score. In a-d the skill is with respect to GPCP for the region 
50oE-180oE, 0o-50oN	
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Fig. 9 a The ENSO-monsoon relationship skill is given by the lag 0 correlation between interannual JJAS 
anomalies of AIR and NINO3.4 SST. The AIR is for land-only gridpoints over 65oE-95oE, 7oN-30oN. The 
results are given for the Rajeevan rainfall data vs. HadISST SST (1961-1999; black), GPCP rainfall vs. SST 
used in the NCEP-NCAR Reanalysis (1979-2007; violet), CMIP5 models (1961-1999; red), and the CMIP3 
models (1961-1999; green). The thick black dashed line is the 5% significance level assuming each year is 
independent for 37 degrees of freedom. b The AIR-NINO3.4 SST correlations in a are plotted vs. the pattern 
correlations of the interannual JJAS precipitation anomalies (mm day-1) from linear regression with JJAS 
NINO3.4 SST anomalies (see Fig. 10). The pattern correlations are calculated with respect to GPCP over the 
region 60oE-100oE, 0o-30oN	
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Fig. 10 Interannual JJAS precipitation anomalies (mm day-1) from linear regression with JJAS NINO3.4 SST 
anomalies a Rajeevan rainfall data vs. HadISST SST (1961-1999), b GPCP rainfall vs. SST used in the 
NCEP-NCAR Reanalysis (1979-2007), c IPSL-CM5A-MR, d FGOALS-s2, e CMIP5 MMM, and f CMIP3 
MMM. The regressions are scaled by one standard deviation of the NINO3.4 SST anomalies and are thus 
consistent with anomalies during El Nino. c and d are the models that span the range of the AIR-NINO3.4 
SST correlations from the CMIP5 and CMIP3 models (see Figure 9a). In panels a-d the first (or only) value 
is the correlation of AIR-NINO3.4 SST. The last value in b is the pattern correlation of GPCP with CMAP 
for the interannual JJAS precipitation anomalies, and in c-f the last (or only) value is the model pattern 
correlation with GPCP for the interannual JJAS precipitation anomalies. The skill metrics are calculated over 
the region 60oE-100oE, 0o-30oN. The Rajeevan rainfall, the HadISST SST, and the model data is for 
1961-1999. The GPCP, CMAP and NCEP-NCAR Reanalysis SST data are for 1979-2007	
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Fig. 11 Interannual East Asian summer monsoon JJA 850hPa wind anomalies and precipitation anomalies 
from linear regression with the revised JJA Wang-Fan 850hPa zonal wind index for a JRA25/GPCP, b 
CMIP5 MMM, c CMIP3 MMM, d gfdl cm2.0 model, e fgoals-g1.0, f HadGEM2-ES, and g INM-CM4. d 
and e are the models with the largest and smallest 850hPa wind pattern correlations compared to JRA25 
850hPa wind anomalies, and f and g are the models with the largest and smallest precipitation pattern 
correlations compared to GPCP. Also given in a is the pattern correlation of JRA25 with NCEP/NCAR 
Reanalysis and GPCP with CMAP, respectively, and in b-g are the model pattern correlations with JRA25 
and GPCP over the region 100oE-140oE, 0o-50oN. The units for the 850hPa wind anomalies are ms-1 and for 
precipitation anomalies the units are mm day-1. The JRA25 reanalysis, the NCEP-NCAR reanalyses, the 
GPCP, and CMAP data are for 1979-2007. The model data is for 1961-1999	
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Fig. 12 a Scatterplot of the pattern correlation with observations of simulated JJA 850hPa wind anomalies 
vs. the pattern correlation with observations of simulated JJA precipitation anomalies over East Asia. The 
skill is relative to JRA25 and GPCP over the region 100oE-140oE, 0o-50oN. b Scatterplot of the pattern 
correlation with observations of simulated JJA 850hPa wind anomalies vs. the pattern correlation with 
observations of the simulated JJA 850hPa wind climatology. The skill is with respect to JRA25 on the x-axis, 
and with respect to ERA40 on the y-axis. c Scatterplot of the pattern correlation with GPCP of simulated JJA 
precipitation anomalies vs. the pattern correlation with observations of the simulated JJA precipitation 
climatology. d Scatterplot of the pattern correlation with GPCP of simulated JJA precipitation anomalies 
over the East Asia (as in Figs. 12a and 12c) vs. the pattern correlation with GPCP of simulated JJAS 
precipitation anomalies over the Indian Summer Monsoon (as in Fig. 9b)	
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Fig. 13 20-100 day bandpass filtered OLR variance for JJAS from a AVHRR (1979-2006), b MPI-ESM-LR, c 
MIROC-ESM, d MIROC5, e CMIP5 MMM, and f CMIP3 MMM. Also given in a is the pattern correlation with 
AVHRR OLR for 1979-1995, and in b-f are the model pattern correlations with AVHRR OLR (1979-2006) over the 
region 40oE-180oE, 30oS-30oN. The model data is for 1961-1999.	
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Fig. 14 Lag regression of 20-100 day bandpass filtered AVHRR OLR with PC-4 for JJAS 1979-2006 for a Day -15 
to h Day 20. The lag regressions have been scaled by one standard deviation of PC-4 to give units of W m-2. The 
pattern correlations are calculated with respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and 
Day 20 of the CsEOF of Annamalai and Sperber (2005) over the region 40oE-180oE, 30oS-30oN. Data are plotted 
where the regressions are statistically significant at the 5% level, assuming each pentad is independent	
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Fig. 15 Scatterplot of the pattern correlation with observations of the simulated JJAS 20-100 day bandpass 
filtered OLR variance vs. the space-time pattern correlation with observations of the simulated JJAS BSISV 
life-cycle. For the variance, the observed and simulated skill is calculated with respect to AVHRR OLR for 
JJAS 1979-2006. The observed variance skill is calculated using the JJAS 20-100 day bandpass filtered OLR 
variance for 1979-1995. For BSISV, the skill is for the models best matching patterns with respect to Day 
-15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of the CsEOF given in Annamalai and 
Sperber (2005). The observed (1979-2006) and simulated BSISV life-cycle is recovered from linear 
regression with PC-4 obtained by projecting 20-100 day bandpass filtered OLR onto the Day 0 CsEOF 
pattern from Annamalai and Sperber (2005). The skill scores are calculated over the region 40oE-180oE, 
30oS-30oN	
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Fig. 16 As Fig. 14, but for MIROC5 20-100 day bandpass filtered JJAS OLR (1961-1999)	
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Fig. 17 As Fig. 14, but for the CMIP5 MMM. For each time lag, and at each gridpoint, the average anomaly is 
plotted if more than half of the models have a statistically significant convective anomaly, irrespective of sign	
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