MRI Footnotes

Meteorological Research Institute (MRI): References


[1]Arakawa, A., and Y. Mintz, 1974: The UCLA general circulation model. Notes from a Workshop on Atmospheric Modeling, 25 March-4 April 1974, Dept. of Meteorology, University of California at Los Angeles, 404 pp.

[2]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.

[3]Tokioka, T., K. Yamazaki, I. Yagai, and A. Kitoh, 1984: A description of the Meteorological Research Institute atmospheric general circulation model (MRI GCM-I). MRI Tech. Report No. 13, Meteorological Research Institute, Ibaraki-ken, Japan, 249 pp.

[4]Yagai, I., and T. Tokioka, 1987: The effect of increased surface drag coefficient over the continents on January circulations. Short- and Medium-Range Numerical Weather Prediction (Special Volume of J. Meteor. Soc. Japan), T. Matsuno (ed.), 409-419.

[5]Yagai, I., and K. Yamazaki, 1988: Effect of the internal gravity wave drag on the 12-layer MRI GCM January simulation. Report No. 12 of the Proceedings of the WGNE Workshop on Systematic Errors in Models of the Atmosphere, 19-23 September 1988, Working Group on Numerical Experimentation, Toronto, 8 pp.

[6]Kitoh, A., K. Yamazaki, and T. Tokioka, 1988: Influence of soil moisture and surface albedo changes over the African tropical rain forest on summer climate investigated with the MRI GCM-I. J. Meteor. Soc. Japan, 66, 65-86.

[7]Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883-901.

[8]Noda, A. and T. Tokioka, 1989: The effect of doubling the CO2 concentration on convective and non-convective precipitation in a general circulation model coupled with a simple mixed layer ocean model. J. Meteor. Soc. Japan, 67, 1057-1069.

[9]Shibata, K., and T. Aoki, 1989: An infrared radiative scheme for the numerical models of weather and climate. J. Geophys. Res., 94, 14923-14943.

[10]Kitoh, A., A. Noda, Y. Nikaidou, T. Ose, and T. Tokioka, 1995: AMIP simulations of the MRI GCM. Pap. Met. Geophys, 45, 121-148.

[11]Tokioka, T., 1978: Some considerations on vertical differencing. J. Meteor. Soc. Japan, 56, 98-111.

[12]Holloway, J.L., Jr., and S. Manabe, 1971: Simulation of climate by a general circulation model. 1. Hydrological cycle and heat balance. Mon. Wea. Rev., 99, 335-370.

[13]Palmer, T.N., G.J. Shutts, R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001-1039.

[14]McPeters, R.D., D.F. Heath, and P.K. Bhartia, 1984: Averaged ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. J. Geophys. Res., 89, 5199-5214.

[15]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.

[16]Clough, S.A., F.X. Kneizys, R. Davies, R. Gemache, and R. Tipping, 1980: Theoretical line shape for H2O vapor: Application to continuum. In Atmospheric Water Vapor, T.D. Wilkerson and L.H. Ruhnke (eds.), Academic Press, New York, 695 pp.

[17]Roberts, R.E., J.A. Selby, and L.M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics, 15, 2085-2090.

[18]Godson, W.L., 1953: The evaluation of infra-red radiative fluxes due to atmospheric water vapour. Q. J. Roy. Meteor. Soc., 79, 367-379.

[19]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.

[20]Lord, S.J., 1978: Development and observational verification of a cumulus cloud parameterization. Ph.D. Dissertation, University of California, Los Angeles, 339 pp.

[21]Lord, S.J., and A. Arakawa, 1980: Interaction of a cumulus cloud ensemble with the large-scale environment. Part II. J. Atmos. Sci., 37, 2677-2692.

[22]Lord, S.J., W.C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39, 104-113.

[23]Randall, D., 1976: The interaction of the planetary boundary layer with large-scale circulations. Ph.D. Dissertation, University of California, Los Angeles, 247 pp.

[24]Joseph, D., 1980: Navy 10' global elevation values. National Center for Atmospheric Research notes on the FNWC terrain data set, National Center for Atmospheric Research, Boulder, CO, 3 pp.

[25]Paltridge, G.W., and C.M.R. Platt, 1976: Radiative Processes in Meteorology and Climatology. Elsevier Press, Amsterdam, 318 pp.

[26]Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Clim. Appl. Meteor., 22, 474-487.

[27]Deardorff, J.W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93-106.

[28]Katayama, A., 1978: Parameterization of the planetary boundary layer in atmospheric general circulation models. Kisyo Kenkyu Note No. 134, Meteorological Society of Japan, 153-200 (in Japanese).


Return to MRI GCM-II (4x5 L15) 1993 Table of Contents

Return to MRI GCM-IIb (4x5 L15) 1995 Table of Contents

Return to Main Document Directory


Last update May 2, 1996. For further information, contact: Tom Phillips ( phillips@tworks.llnl.gov )

LLNL Disclaimers

UCRL-ID-116384