## Institute of Atmospheric Physics (IAP): References

[1]Zeng, Q.C. and X.H. Zhang, 1987: Available energy conserving schemes for primitive equations of a spherical baroclinic atmosphere.

*Chinese J. Atmos. Sci*.,

**11**(2), 121-142.

[2]Zeng, Q.C., C.G. Yuan, X.H. Zhang, Z.Z. Liang, and N. Bao, 1987: A global gridpoint general circulation model. Collections of papers presented at the WMO/IUGG NWP Symposium, Tokyo, 4-8 August 1986, 421-430.

[3]Ghan, S.J., J.W. Lingaas, M.E. Schlesinger, R.L. Mobley, and W.L. Gates, 1982: A documentation of the OSU two-level atmospheric general circulation model. Climatic Research Institute, Report No. 35, Oregon State University, Corvallis, OR, 395 pp.

[4]Zeng, Q.C., X.H. Zhang, X.Z. Liang, C.G. Yuan, and S.F. Chen, 1989: Documentation of IAP two-level atmospheric general circulation model. DOE/ER/60314-HI, U.S. Department of Energy, Washington, D.C., 383 pp.

[5]Zeng, Q.C. and X.H. Zhang, 1982: Perfectly
energy-conservative time-space finite-difference scheme and the consistent
split method to solve the dynamical equations of a compressible fluid. *Scientia
Sinica*, **Series B**, **XXV**(8), 866-880.

[6]Arakawa, A., and V.R. Lamb, 1977: Computational design of
the basic dynamical processes of the UCLA general circulation model. In
*Methods in Computational Physics*, **17**, J. Chang (ed.), Academic
Press, New York, 173-265.

[7]Robert, A.J., 1966: The integration of a low order
spectral form of the primitive meteorological equations. *J. Met. Soc.
Japan*, **44**, 237-245.

[8]Schuman, F.G., 1971: Resuscitation of an integration procedure. NMC Office Note, National Meteorological Center, Washington, D.C.

[9]Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp.

[10]Lu, X.C., 1986: An efficient highly composite FFT
algorithm, Chinese *J. Comput. Phys.*, **3,** 99-112.

[11]Fjortoft, R., 1953: On the changes in the spectral
distribution of kinetic energy for two-dimensional non-divergent flow.
*Tellus*, **5**, 225-230.

[12]Shapiro, R., 1970: Smoothing, filtering and boundary
effects. *Rev. Geophys. Space Phys.,* **8**, 359-387.

[13]Liang, X.-Z., 1986: The design of the IAP GCM and the simulation of climate and its interseasonal variability. Ph.D. Thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 250 pp.

[14]Zeng, Q.C., 1979: *Physical-Mathematical Basis of
Numerical Weather Prediction, Vol. 1.* Science Press, Beijing, 543 pp.

[15]Smagorinsky, J., 1963: General circulation experiments
with the primitive equations. I. The basic experiment. *Mon. Wea. Rev*.,
**91**, 99-164.

[16]Washington, W.M., and D.L. Williamson, 1977: A
description of the NCAR GCM. In *Methods in Computational Physics*,
**17**, J. Chang (ed.), Academic Press, New York, 111-172.

[17]Dütsch, H.U., 1971: Photochemistry of atmospheric
ozone. *Adv. Geophys*., **15**, 219-322.

[18]Cess, R.D., 1985: Nuclear war: Illustrative effects of
atmospheric smoke and dust upon solar radiation. *Clim. Change*, **7**,
237-251.

[19]Cess, R.D., G.L. Potter, S.J. Ghan, and W.L. Gates,
1985: The climatic effects of large injections of atmospheric smoke and dust: A
study of climate feedback mechanisms with one-and three-dimensional climate
models. *J. Geophys. Res.*, **90**, 12937-12950.

[20]Somerville, R.C.J., P.H. Stone, M. Halem, J.E. Hansen,
J.S. Hogan, L.M. Druyan, G. Russell, A.A. Lacis, W.J. Quirk, and J. Tennenbaum,
1974: The GISS model of the global atmosphere.* J. Atmos. Sci.*,
**31**, 84-117.

[21]Cess, R.D., and G.L. Potter, 1987: Exploratory studies
of cloud radiation forcing with a general circulation model. *Tellus*,
**39A**, 460-473.

[22]Lacis, A.A., and J. E. Hansen, 1974: A parameterization
for the absorption of solar radiation in the Earth's atmosphere.* J. Atmos.
Sci.*, **31**, 118-133.

[23]Katayama, A., 1972: A simplified scheme for computing radiative transfer in the troposphere. Tech. Report No. 6, Department of Meteorology, University of California, Los Angeles, CA, 77 pp.

[24]Arakawa, A., A. Katayama, and Y. Mintz, 1969: Numerical simulation of the general circulation of the atmosphere. Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction (Tokyo, 1968), Japan Meteorological Agency, Tokyo, pp. IV-7 to IV-12.

[25]Lowe, P.R. and J.M. Ficke, 1974: The computation of saturation vapor pressure. Tech. Paper No. 4-74, Environmental Prediction Research Facility, Naval Postgraduate School, Monterey, CA, 27 pp.

[26]Gates, W.L., and A.B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a one-degree global grid. Part 1: Terrain heights. Tech. Report R-1276-1-ARPA, The Rand Corporation, Santa Monica, CA, 132 pp.

[27]Manabe, S., and J.L. Holloway, 1975: The seasonal
variation of the hydrologic cycle as simulated by a global model of the
atmosphere. *J. Geophys. Res.*, **80**, 1617-1649.

[28]Posey, T.W., and P.F. Clapp, 1964: Global distribution
of normal surface albedo. *Geofis. Int*., **4**, 33-48.

[29]Priestly, C.H.B., 1959: *Turbulent Transfer in the
Lower Atmosphere*. University of Chicago Press, Chicago, IL, 130 pp.

[30]Bhumralkar, C.M., 1975: Numerical experiments on the
computation of ground surface temperature in an atmospheric general circulation
model. *J. Appl. Meteor*., **14**, 1246-1258.

Return to IAP Table of Contents

#### Return to Main Document Directory

Last modified September 12, 1995. For further information, contact: Tom Phillips ( phillips@tworks.llnl.gov )

UCRL-ID-116384