Goddard Space Flight Center (GSFC): References
[1]Schubert, S.D., R.B. Rood, and J. Pfaendtner, 1993: An assimilated dataset for Earth science applications. Bull. Amer. Meteor. Soc., 74, 2331-2342.
[2]Kalnay, E., M. Kanamitsu, J. Pfaendtner, J. Sela, M. Suarez, J. Stackpole, J. Tuccillo, L. Umscheid, and D. Williamson, 1989: Rules for the interchange of physical parameterizations. Bull. Am. Meteor. Soc., 70, 620-622.
[3]Fox-Rabinovitz, M., H.M. Helfand, A. Hou, L.L. Takacs, and A. Molod, 1991: Numerical experiments on forecasting climate simulation and data assimilation with the new 17 layer GLA GCM. Proceedings of the Ninth Numerical Weather Prediction Conference, American Meteorological Society, Denver, CO, 506-509.
[4]Helfand, H.M., M. Fox-Rabinovitz, L. Takacs, and A. Molod, 1991: Simulation of the planetary boundary layer and turbulence in the GLA GCM. Proceedings of the AMS Ninth Conference on Numerical Weather Prediction, 21-25 October 1991, Denver, CO, 514-517.
[5]Suarez, M.J., and L.L. Takacs, 1993: Documentation of the ARIES/GEOS dynamical core Version 2. NASA Tech. Memo., Goddard Space Flight Center, Greenbelt, MD. [Available from M.J. Suarez, GSFC, Code 913, Greenbelt, MD 20771.]
[6]Harshvardhan, R. Davies, D.A. Randall, and T.G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009-1016.
[7]Moorthi, S., and M.J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978-1002.
[8]Sud, Y.C., and A. Molod, 1988: The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the GLA GCM. Mon. Wea. Rev., 116, 2366-2387.
[9]Helfand, H.M., and J.C. Labraga, 1988: Design of a non-singular level 2.5 second order closure model for prediction of atmospheric turbulence. J. Atmos. Sci., 45, 113-132.
[10]Burridge, D.M., and J. Haseler, 1977: A model for medium-range weather forecasting: adiabatic formulation. Tech. Report No. 4, European Centre for Medium-Range Weather Forecasts, Bracknell, Berkshire, UK.
[11]Arakawa, A., and M.J. Suarez, 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34-45.
[12]Schemm, J., S. Schubert, J. Terry, and S. Bloom, 1992: Estimates of monthly mean soil moisture for 1979-1989. NASA Tech. Memo. No. 104571, Goddard Space Flight Center, Greenbelt, MD, 252 pp.
[13]Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.
[14]Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev. Geophys. Space Phys., 8, 359-387.
[15]Sadourny, R., 1975: The dynamics of finite difference models of the shallow water equations. J. Atmos. Sci., 32, 680-689.
[16]Arakawa, A., and V.R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 18-36.
[17]Rosenfield, J.E., M.R. Schoeberl, and M.A. Geller, 1987: A computation of the stratospheric diabatic circulation using an accurate radiative transfer model. J. Atmos. Sci., 44, 859-876.
[18]Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp. [Available from U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.]
[19]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[20]Chou, M.-D., 1984: Broadband water vapor transmission functions for atmospheric IR flux computation. J. Atmos. Sci., 41, 1775-1778.
[21]Chou, M.-D, and L. Peng, 1983: A parameterization of the absorption in 15-micron CO2 spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-2192.
[22]Rodgers, C.D., 1968: Some extension and applications of the new random model for molecular band transmission. Quart. J. Roy. Meteor. Soc., 94, 99-102.
[23]Meador, W., and W.R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630-643.
[24]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.
[25]Joseph, D., 1980: Navy 10' global elevation values. National Center for Atmospheric Research notes on the FNWC terrain data set, National Center for Atmospheric Research, Boulder, CO, 3 pp.
[26]Lanczos, C., 1966: Discourse on Fourier Series. Hafner Publishing, 255 pp.
[27]Matson, M., 1978: Winter snow-cover maps of North America and Eurasia, 1966-1976. National Environmental Satellite Service, Washington, D.C.
[28]Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.
[29]Large, W.G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324-336.
[30]Kondo, J. 1975: Air-sea bulk transfer coefficients in diabatic conditions. Boundary Layer Meteor., 9, 91-112.
[31]Posey, T.W., and P.F. Clapp, 1964: Global distribution of normal surface albedo. Geofis. Int., 4, 33-48.
[32]Kitzmiller, D.H., 1979: GMSF general ciruclation model's 12-month surface albedo dataset. Internal Report, Goddard Modeling and Simulation Facility, NASA Goddard Space Flight Center, Greenbelt, MD.
[33]Panofsky, H.A., 1973: Tower Micrometeorology. In Workshop on Micrometeorology, D.A. Haugen (ed.), American Meteorology Society, Boston, 392 pp.
[34]Clarke, R.H., 1970: Observational studies in the atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 96, 91-114.
[35]Yaglom, A.M., and B.A. Kader, 1974: Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Peclet numbers. J. Fluid Mech., 62, 601-623.
[36]Helfand, H.M., 1985: A new scheme for the parameterization of the turbulent planetary boundary in the GLAS fourth order GCM. In Preprints of the Seventh Conference on Numerical Weather Prediction, American Meteorological Society, Montreal.
[37]Mintz, Y., and Y. Serafini, 1984: Global fields of monthly normal soil moisture as derived from observed precipitation and an estimated potential evapotranspiration. Final scientific report under NASA grant NAS 5-26, Part V, Dept. of Meteorology, University of Maryland at College Park.
Return to GSFC Table of Contents
Return to Main Document Directory
Last modified September 12, 1995. For further information, contact: Tom Phillips ( phillips@tworks.llnl.gov )
UCRL-ID-116384