Colorado State University (CSU): References
[1]Randall, D.A., 1987: Turbulent fluxes of liquid water and buoyancy in partly cloudy layers. J. Atmos. Sci., 44, 850-858.
[2]Randall, D.A., 1989: A description of the CSU atmospheric general circulation model. Internal Technical Report, Atmospheric Sciences Department, Colorado State University, 55 pp.
[3]Randall, D.A., J.A. Abeles, and T.G. Corsetti, 1985: Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J. Atmos. Sci., 42, 641-676.
[4]Randall, D.A., Harshvardhan, T.G. Corsetti, and D.A. Dazlich, 1989: Interactions among clouds, radiation, and convection in a general circulation model. J. Atmos. Sci., 46, 1943-1970.
[5]Randall, D.A., Harshvardhan, and D.A. Dazlich, 1990: Diurnal variability of the hydrological cycle in a general circulation model. J. Atmos. Sci., 48, 40-62.
[6]Suarez, M. J., A. Arakawa, and D.A. Randall, 1983: Parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111, 2224-2243.
[7]Harshvardhan, R. Davies, D.A. Randall, and T.G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009-1016.
[8]Harshvardhan, D.A. Randall, T.G. Corsetti, and D.A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 40, 1922-1942.
[9]Stephens, G.L., D.A. Randall, I.L. Wittmeyer, and D.A. Dazlich, 1993: The earth's radiation budget and its relation to atmospheric hydrology 3. Comparison of observations over the oceans with a GCM. J. Geophys. Res., 98, 4931-4950.
[10]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.
[11]Takano, K., and M.G. Wurtele, 1982: A fourth-order energy and potential enstrophy conserving difference scheme. Air Force Geophysics Laboratory Report, AFGL-TR-82-0205, Hanscom Air Force Base, Bedford, MA, 85 pp.
[12]Tokioka, T.A., 1978: Some considerations on vertical differencing. J. Meteor. Soc. Japan, 56, 98-111.
[13]Mintz, Y., and Y. Serafini, 1981: Global fields of soil moisture and land-surface evapotranspiration. NASA Tech. Memo. 83907, Research Review--1980/81, NASA Goddard Space Flight Center, Greenbelt, MD, 178-180.
[14]Rood, R.B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71-100.
[15]Smagorinsky, 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99-164.
[16]McPeters, R.D., D.F. Heath, and P.K. Bhartia, 1984: Averaged ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. J. Geophys. Res., 89, 5199-5214.
[17]Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp. [Available from U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.]
[18]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[19]Chou, M.-D., 1984: Broadband water vapor transmission functions for atmospheric IR flux computations. J. Atmos. Sci., 41, 1775-1778.
[20]Chou, M.-D., and L. Peng, 1983: A parameterization of the absorption in the 15 micron CO2 spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-2192.
[21]Rodgers, C.D., 1968: Some extension and applications of the new random model for molecular band transmissions. Quart. J. Roy. Meteor. Soc., 94, 99-102.
[22]Roberts, R.E., J.E.A. Selby, and L.M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics, 15, 2085-2090.
[23]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.
[24]Lord, S.J., 1978: Development and observational verification of a cumulus cloud parameterization. Ph.D. Dissertation, University of California, Los Angeles, 339 pp.
[25]Lord, S.J., W.C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment, IV: The discrete model. J. Atmos. Sci., 39, 104-113.
[26]Manabe, S., J. Smagorinsky, and R.F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769-798.
[27]Deardorff, J.W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93-106.
[28]Manabe, S., 1969: Climate and ocean circulation. 1. The atmospheric circulation and the hydrology of the Earth's surface. Mon. Wea. Rev., 97, 739-774.
[29]Randall, D.A., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert parameterization with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models, K.A. Emanuel and D.J. Raymond (eds.), Meteorological Monographs, Vol. 24, No. 46, American Meteorological Society, Boston, MA, 137-144.
[30]Fowler, L.D., D.A. Randall, and S.A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. J. Climate, 9, 489-529.
[31]Fowler, L.D., and D.A. Randall, 1996a: Liquid and ice cloud microphysics in the CSU general circulation model. Part 2: Simulation of the Earth's radiation budget. J. Climate, 9, 530-560.
[32]Fowler, L.D., and D.A. Randall, 1996b: Liquid and ice cloud microphysics in the CSU general circulation model. Part 3: Sensitivity tests. J. Climate, 9, 561-586.
[33]Sellers, P.J., D.A. Randall, G.J. Collatz, J. Berry, C. Field, D.A. Dazlich, C. Zhang, and L. Bounoua, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9, 676-705.
[34]Sellers, P.J., S.O. Los, C.J. Tucker, C.O. Justice, D.A. Dazlich, G.J. Collatz, and D.A. Randall, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706-737.
[35]Randall, D.A., P.J. Sellers, J.A. Berry, D.A. Dazlich, C. Zhang, G.J. Collatz, A.S. Denning, S.O. Los, C.B. Field, I. Fung, C.O. Justice, C.J. Tucker, and L. Bounoua, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 3: The greening of the CSU general circulation model. J. Climate, 9, 738-763.
[36]Sellers, P.J., L. Bounoua, G.J. Collatz, D.A. Randall, D. A. Dazlich, S. Los, J. Berry, I. Fung, J. Tucker, C. Field, and T.G. Jensen, 1996: A comparison of the radiative and physiological effects of 2 x CO2 on the global climate. Science, 271, 1402-1405.
[37]Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505-531.
[38]Deardorff, J.W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903. .
Return to Model CSU CSU91 (4x5 L17) 1991 Table of Contents
Return to Model CSU CSU95 (4x5 L17) 1995 Table of Contents
Return to Main Document Directory
Last modified September 30, 1995. For further information, contact: Tom Phillips (phillips@tworks.llnl.gov )
UCRL-ID-116384