Center for Ocean-Land-Atmosphere Studies (COLA): References
[1]NMC Development Division, 1988: Documentation of the research version of the NMC Medium-Range Forecasting model. NMC Development Division, National Meteorological Center, Camp Springs, MD, 504 pp.
[2]Kinter III, J.L., J. Shukla, L. Marx, and E.K. Schneider, 1988: A simulation of the winter and summer circulations with the NMC global spectral model. J. Atmos. Sci., 45, 2486-2522.
[3]Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III, Y-T. Hou, and E. Albertazzi, 1989a: Implementing the simple biosphere model in a general circulation model: Methodologies and results. NASA Contractor Report 185509, Center for Land-Ocean-Atmosphere Interactions, University of Maryland at College Park, 76 pp.
[4]Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III, Y-T. Hou, and E. Albertazzi, 1989b: Implementing the simple biosphere model in a general circulation model. J. Atmos. Sci., 46, 2757-2782.
[5]Xue, Y.-K., P.J. Sellers, J.L. Kinter II, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345-364.
[6]Hou, Y.-T., 1991: Cloud-Radiation-Dynamics Interaction. Ph.D. Thesis, University of Maryland at College Park, 209 pp.
[7]Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.
[8]Mellor, G.L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875.
[9]Kirtman, B., A. Vernekar, D. DeWitt, and J. Zhou, 1993: Impact of orographic gravity wave drag on extended-range forecasts with the COLA GCM. Atmosfera, 6, 3-23.
[10]Alpert, J.C., M. Kanamitsu, P.M. Caplan, J.G. Sela, G.H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range model. Preprints of the Eighth Conference on Numerical Weather Prediction, American Meteorological Society, Baltimore, MD, 726-733.
[11]Pierrehumbert, R.T., 1987: An essay on the parameterization of orographic wave drag. In Observation, Theory, and Modelling of Orographic Effects, Vol. 1. European Centre for Medium-Range Weather Forecasts, Reading, England, 251-282.
[12]Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1-23.
[13]Lindzen, R.S., 1981: Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707-9714.
[14]Harshvardhan, R. Davies, D.A. Randall, and T.G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009-1016.
[15]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[16]Joseph, J.H., W.J. Wiscombe, and J.A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452-2459.
[17]Harshvardhan, D.A. Randall, T.G. Corsetti, and D.A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 40, 1922-1942.
[18]Chou, M.-D., 1984: Broadband water vapor transmission functions for atmospheric IR flux computation. J. Atmos. Sci., 41, 1775-1778.
[19]Chou, M.-D, and L. Peng, 1983: A parameterization of the absorption in 15-micron CO2 spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-2192.
[20]Rodgers, C.D., 1968: Some extensions and applications of the new random model for molecular band transmission. Quart. J. Roy. Meteor. Soc., 94, 99-102.
[21]Roberts, R.E., J.A. Selby, and L.M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics., 15, 2085-2090.
[22]Kuo, H.L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40-63.
[23]Sela, J., 1980: Spectral modeling at the National Meteorological Center, Mon. Wea. Rev., 108, 1279-1292.
[24]Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proceedings of the ECMWF Workshop on Convection in Large-Scale Models, 28 November-1 December 1983, European Centre for Medium-Range Weather Forecasts, Reading, England, 297-316.
[25]Slingo, J.M., 1987: The development and verification of a cloud prediction model for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899-927.
[26]Joseph, D., 1980: Navy 10' global elevation values. National Center for Atmospheric Research notes on the FNWC terrain data set, National Center for Atmospheric Research, Boulder, CO, 3 pp.
[27]Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639-640.
[28]Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505-531.
[29]Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.
[30]Payne, R.E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29, 959-970.
[31]Miyakoda, K., and J. Sirutis, 1986: Manual of the E-physics. [Available from Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308, Princeton, NJ 08542.]
[32]Deardorff, J.W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903.
[33]Machenauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos., 50, 253-271.
Return to COLA Table of Contents
Return to Main Document Directory
Last modified August 25, 1995. For further information, contact: Tom Phillips( phillips@tworks.llnl.gov )
UCRL-ID-116384