Abstract  
Lambert, S.J., J. Sheng,  and J. Boyle, 2002: Winter cyclone frequencies in thirteen models participating in the Atmospheric Model Intercomparison Project (AMIP1). Climate Dynamics, 19, 1-16.

Various aspects of the simulated behaviour of cyclones in thirteen models participating in the AMIP1 exercise are presented. In the simulation of the winter climatological mean sea level pressure field for the Northern Hemisphere, the models produce reasonable simulations of the "semi-permanent" features of the climatology. The greatest departures from the observed climatology occur near the exit regions of the oceanic storm tracks; i.e., over northwestern North America, over and to the west of the British Isles and in the Mediterranean. The departures in the three geographical areas are very systematic in that at least eleven of the models exhibit similar departures from observations. In the Southern Hemisphere the intensity of the circumpolar trough is generally well simulated but positioned slightly too far north. Most models exhibit errors south of Africa, New Zealand, and South America. The simulations of the cyclone events show that the models are reasonably successful in reproducing the large-scale aspects of observed cyclone events but deficiencies in the details of the simulations are apparent. The paucity of simulated events to the south of the Alps and to the east of the Rockies suggests that the models have difficulty simulating lee cyclogenesis. Over much of North America, the models have difficulty simulating the correct level of synoptic activity as demonstrated by the low numbers of both cyclone events and anticyclone events. The models have difficulty simulating the distribution of cyclone events as a function of central pressure. The most common problem is that the models exhibit an ever increasing deficit of events with decreasing central pressure. This problem is more apparent in the Southern Hemisphere than in the Northern Hemisphere and does not appear to be resolution dependent. There is an apparent ENSO signal in the observed Northern Hemisphere interannual variability of intense winter cyclone events. With the exception of ECMWF, the models fail to reproduce this phenomenon. There is some evidence that the models do indeed respond to the interannual variability in the SSTs, but the response tends to be negatively correlated with that of the real atmosphere. In the Southern Hemisphere, there does not appear to be ENSO-induced interannual variability in the observed numbers of cyclone events. Consequently, it could be argued that the models have been reasonably successful in the Southern Hemisphere since they, like the observations, do not exhibit any ENSO-induced interannual variability.