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ABSTRACT

The chaotic behavior of the continental climate of an atmospheric general circulation model
is investigated from an ensemble of decadal simulations with common specifations of radiative
forcings and monthly ocean boundary conditions, but different initial states of atmosphere and
land. The variability structures of key model land-surface processes appear to agree sufficiently
with observational estimates to warrant detailed examination of their predictability on seasonal
time scales. This predictability is inferred from several novel measures of spatio-temporal
reproducibility applied to eleven model variables. The reproducibility statistics are computed for
variables in which the seasonal cycle is included or excluded, the former case being most pertinent
to climate model simulations, and the latter to predictions of the seasonal anomalies. Because the
reproducibility metrics in the latter case are determined in the context of a “perfectly” known ocean
state, they are properly viewed as estimates optitentialpredictability of seasonal climate. In-
ferences based on these reproducibility metrics are shown to be in general agreement with those
derived from more conventional measures of potential predictability.

It is found that the land-surface variables which include the seasonal cycle are impacted only
marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial
reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, al-
though itis considerably higher in the Tropics; its spatial reproducibility also fluctuates in tandem with
warm and cold phases of the El Nifio/Southern Oscillation phenomenon. However, the detailed sensi-
tivities to initial conditions depend somewhat on the land-surface process: pressure and temperature
anomalies exhibit the highest temporal reproducibilities, while hydrological and turbulent flux anom-
alies show the highest spatial reproducibilities. Implications of these results for model
intercomparisons and seasonal forecasts are elaborated.



1. Introduction

While the implications of initial-condition sensitivity (i.e. “chaos”) for the prediction of
climate have been recognized for decades (e.g. Lorenz 1964, Leith 1973), practical investigation
of this problem with general circulation models (GCMs) began much more recently (Chervin 1986,
Zwiers 1987). Moreover, only in the past few years has computer performance advanced
sufficiently to permit routine generation of experimental ensembles for studies of climate
predictability on a range of time scales.

Cubasch et al. (1994), for example, showed that the multi-decadal climate simulated by a
synchronously coupled ocean-atmosphere model is sensitive to the initial conditions, an issue
revisited by Delworth and Knutson (2000) for transient global-warming experiments. Barnett
(1995) noted that chaos is also a factor in “two-tier” experiments wherein the ocean and atmosphere
models are asynchronously coupled, and Hansen et al. (1997) documented its effects at annual to
decadal time scales in coupled climate-change simulations involving a mixed-layer ocean. Many
other investigators (a partial list includes Palmer and Anderson 1994, Dix and Hunt 1995, Kumar
and Hoerling 1995, Stern and Miyakoda 1995, Bengtsson et al. 1996, Zwiers 1996, Carson 1998,
Zwiers and Kharin 1998, Wang and Zwiers 1999, Koster et al. 2000, Shukla et al. 2000, Dirmeyer
2001, and Dirmeyer et al. 2001) have conclusively demonstrated that, even when ocean boundary
conditions are prescribed, simulations of climate also are highly chaotic at seasonal time scales,
especially outside the Tropics.

However, many of these seasonal predictability studies have focussed on the dynamics of the
free atmosphere, rather than on the processes at the land surface, the chief locus of human
interaction with the climate system. Even when continental processes were considered (e.g. by Dix
and Hunt 1995, Stern and Miyakoda 1995, Wang and Zwiers 1999, Koster et al. 2000, and
Dirmeyer 2001), only a limited number of variables (e.g. precipitation and soil moisture) were
investigated. Thus, a more comprehensive assessment of the predictability of seasonal land-surface
climate is called for, in light of the potentially huge societal ramifications.

It should be noted as well that the initial-condition sensitivity of continental climate is
relevant for climate modeling activities that lie outside the sphere of predictability stpeliee
The most clearcut examples include modeling experiments where chaos may confound attempts to
attribute model variations in simulated seasonal climates to differences in coupled land-surface
schemes (e.g. Henderson-Sellers et al. 1996, Polcher 2000); but such issues are also germane for
virtually all model intercomparison projects that consider land-surface processes. Hence, there is
an overarching need to identify when and where continental climate simulations are likely to be
most “reproducible” in the context of variations in model initial conditions.



In the present study, we infer the spatio-temporal reproducibility of a diverse collection of
seasonal land-surface variables from an ensemble of decadal climate simulations implemented by
a version of the European Centre for Medium-Range Weather Forecasts (ECMWF) GCM with
prescribed ocean boundary conditions. We consider the reproducibility of each land-surface
variable when its climatological seasonal cycle is included or excluded--configurations that are
most pertinent, respectively, to model intercomparison projects and seasonal predictability studies.

In Section 2, we summarize the salient features of the ECMWF model version and of the
experimental design, and in Section 3 we compare the simulated interannual variability against
observational analyses, as an indication of the model’s suitability for this study. In Section 4, we
apply some novel measures of spatio-temporal reproducibility to the selected land-surface
variables, and in Section 5 we verify that these results are comparable to those obtained from more
conventional metrics. Finally, in Section 6 we elaborate on the implications of this study for both
model intercomparisons and seasonal forecasts.

2. Experimental Design

a. The model

For this study, we employed cycle 36 of the ECMWF atmospheric GCM, a version that was
in operational use during the early 1990s. In this model, the atmospheric primitive equations are
represented as truncated series of spherical harmonic basis functions, where nonlinear terms and
many physical parameterizations are calculated on a Gaussian grid and then transformed to the
spectral space. In our experiments, the horizontal resolution was triangularly truncated at wave
number 42 (corresponding to a 64 x 128 Gaussian grid), and vertical differences were expressed
on 19 unevenly spaced levels in hybrid sigma-pressure coordinates. For a surface pressure of 1000
hPa, the lowest prognostic level was at 996 hPa, and 5 levels were below 800 hPa.

The prognostic equations were solved semi-implicitly at a 30-minute time step, but with
radiative fluxes (after Morcrette 1991) and clouds (after Slingo 1987) updated only every 3 hours.
Convection was formulated as in Tiedtke (1989). Dissipation was implemented as biharmonic
horizontal diffusion, stability-dependent second-order vertical diffusion, and orographic gravity-
wave drag is parameterized after Miller et al. (1989). In the surface layer, fluxes of momentum, heat,
and moisture were treated as in Louis (1979), with Miller et al. (1992) modifications of stability-
dependent drag coefficients to enhance ocean surface evaporation for calm conditions.

Land-surface processes were parameterized after Blondin (1989). A vegetation canopy
occupying a variable fraction of each grid box intercepted a portion of the incident precipitation,
which subsequently evaporated at the potential rate. Transpiration of soil moisture was regulated



by a canopy resistance that depended on local radiation and moisture stresses, but not on vegetation
type. Evaporation and sublimation from the bare-soil and snow-covered fractions of each grid box
also were treated.

Temperature and moisture were predicted by diffusion equations in top and middle soil layers
(thickness 0.07 m and 0.42 m, respectively), but were prescribed from monthly climatologies in an
underlying deep layer. When the moisture capacity of the top soil layer (.02 m) was exceeded, surface
runoff occurred; base flow resulted from overflow of the middle soil layer (moisture capacity 0.12
m). Further characteristics of the ECMWEF (cycle 36) model are summarized by Phillips (1994).

Several potential sources of chaotic behavior may be identified in such a land-surface
scheme. First, the initial specification of soil temperature/moisture and snow cover can impact the
scheme’s equilibrium state (Yang et al. 1995). The presence of canopy-intercepted precipitation
also tends to skew the variability of the surface evaporation toward higher frequencies (Scott et al.
1997). Moreover, coupling this scheme to an atmospheric model that is also sensitive to initial
conditions is likely to accentuate the overall chaotic behavior of the system.

Some problematical aspects of this land-surface scheme for inferring the reproducibility of
continental climate also should be mentioned. The most significant drawback is the use of a
climatological soil layer, which fails to ensure conservation of energy and moisture, since a zero-flux
condition is not imposed at the lower boundary of the soil column. This and other shortcomings (e.g.
as noted by Betts et al. 1993) have motivated revisions of the land-surface parameterizations in
subsequent versions of the ECMWF model (Viterbo and Beljaars 1995, Beljaars et al. 1996).

b. The ensemble experiments

An ensemble of 6 decadal climate simulations were generated, where each realization had
common ocean boundary conditions that included Atmospheric Model Intercomparison Project
(AMIP) specifications of observed monthly sea surface temperatures (SSTs) and sea ice extents for
the period 1 January 1979 to 31 December 1988 (Gates 1992, Gates et al. 1999). (These boundary
conditions were updated daily by linear interpolation of contiguous monthly fields.) In addition,

common AMIP values of the solar const&t865 W n?) and the carbon dioxide concentration (345
ppm) were specified.

The nominal start time of each realization was also the same (00 GMT on 1 January 1979),
but the initial conditions of atmosphere and land differed. For the first realization, the initial
conditions were specified from the ECMWF observational analysis for 00 GMT on 15 January
1979 (taken as the effective date of the monthly mean January 1979 AMIP SST and sea ice
extents). For each of the 5 companion realizations, a different initial state that also was



representative of January climate was imposed, for example, by specifying the initial conditions
(at 00 GMT on 1 January 1979) for a new simulation to be the same as the state at the last time step
(i.e., at 23:30 GMT on 31 December 1988) of a companion simulation.

3. The Simulated Surface Climate

a. Model data

For each decadal realization, we computed time series of 120 monthly averages of 11 AMIP
“standard output variables” (Gates 1992) that provided a fairly comprehensive portrait of the
simulated surface climate (Table 1). We also calculated time series of the seasonal averages of these
variables, i.e. for each sample of March-April-May (MAMune-July-August (JJASeptember-
October-November (SONand December-January-February (Jpdinates. (Owing to the simula-
tion start date on 1 January 1979, only 9 samples of DJF climates were available, resulting in a time
series of 39 seasonal samples per decadal realization.)

As expected, these seasonal averages were less sensitive to initial conditions than were the
monthly means, since longer time-averaging filters out more of the climate noise engendered by the
chaotic daily weather systems (Leith 1973, Barnston 1994). Averaging over periods longer than a
season would further decrease the level of climate noise (Ebisuzaki 1995, Chen and van den Dool 1997),
but at the expense of reducing the number of samples available from the decadal simulations. We thus
limited our analysis to seasonal time scales.

b. Validation of model variability

The accuracy to which the reproducibility of seasonal land-surface climate can be estimated
from ensemble experiments depends on how well the model reproduces the observed interannual
variability (Kumar et al. 1996, Sperber and Palmer 1996, Liang et al. 1997). Hence, as a
preliminary check of the model, we compare the seasonal interannual variability of 3 key seasonal
variables--sea-level pressugssl), surface air temperaturta§), and precipitationgr)--against the
corresponding NCEP-NCAR reanalysis products over the 1979-1988 decade (Kalnay et al. 1996).
(For reasons that will become clearer in Section 5, our choice of the NCEP-NCAR reanalysis as a
model validation reference is primarily because it provides a comprehensive and self-consistent
picture of surface climate variability during the AMIP period 1979-1988, and not necessarily
because it affords the “best” estimate of variability for any single process.)

Comparison maps are shown for JJA and DJF in Figures 1-3. From Figure 1, it is seen that
the simulated interannual variability of sea-level pressure is generally in good agreement with the



reanalysis. The chief discrepancies include too little variability near Antarctica in JJA (Figure la
vs 1b) and over the Northern Atlantic/European sect®Ji(Figure 1c vs 1d).

For surface air temperature in JJA, the centers of variability are about the same magnitude as
in the reanalysis, although their position and extent are somewhat different (Figure 2a vs 2b). In
DJF, however, the model’s variability is systematically lower than that of the reanalysis over the
Northern continents (Figure 2c vs 2d).

The magnitude and pattern of the model’s precipitation variability is quite similar to that of the
reanalysis in midlatitudes, especially in JJA (Figure 3a vs 3b); however, the simulated variability is
generally too large over the tropical oceans, as well as over southern Asia during JJA. Here the
discrepancies may largely reflect the different convective schemes of the ECMWF and NCEP
reanalysis models (Tiedtke 1989, Pan and Wu 1994).

In summary, the ECMWF model seems to produce a generally credible simulation of the
interannual variability of these key surface variables, especially over land. However, there are some
apparent shortcomings in simulating details of this variability in certain regions and seasons.

4. Reproducibility of Model Land-Surface Variables

a. Measures of spatio-temporal reproducibility

To quantify the spatio-temporal reproducibility of a variablewe compute temporal and
spatial (pattern) correlations between all the independent pairs of realizations that are available
from the ensemble (Santer 1988). That is, at each grid point (i, j) we calculate zero-lag temporal
correlationg between each independent pair (I, m) of realizations of

K
r(i, j, 1, m) =kZ{V(i, Jo k1) = VG J DRV ko m) -V mBAK <oy i, J, D<oy i j m)}

HereV denotes the time average\bfindo; is its temporal standard deviation; the summation is over

all K = 39 seasonal samples k in a decadal realization. As a measure of the spatial reproducibility of
each seasonal sample k, we compute pattern correlaioetsveen each independent pair (I, m) of
realizations oW:

IxJ

sk, 1, m) =2 VG, J, K, 1) - V0 DIV b ko m) - V(K mIFQ x 3)+05 (K, 1) (k, m)}
i

Here [V] denotes the spatial average\ondagis its spatial standard deviation; the summation is

over the total number | x J of surface grid points (i,j) for the chosen 64 x 128 Gaussian grid, or ~ 2500
grid points when only land surfaces are considered.



For an ensemble of n model experiments, the number N of independent pairs (I,m) of
realizations is given by
N = nl/{2!(n-2)!}
In our study, the ensemblé 0 = 6 realizations yield N = 15samples of ands, thereby capturing
essentially all the available information on the spatio-temporal reproducibilit¥. éfs an overall
measure of reproducibility, we calculate the mgaand the scatted among these N samples. For
example, in the case of measure

N
w{ri)}= 2 r(ij,l,m)y N
I, m

N

S(r(i,j)} = {|Z (r(i Lom) - p{r(i.j)}) 2/ N} 22

b. Reproducibility of the seasonal variables

We first consider a surface variable that includes the seasonal cycle--common practice in
climate model intercomparison projects. In this contextand s essentially measure the
reproducibility of the variable’s seasonal cycle, which accounts for nearly all of the spatio-
temporal variance about the decadal mean.

Temporal reproducibility

As an example of the temporal reproducibility of a model variable, map§ ¢f j)} andd{r(i, j)}
for the simulated seasonal precipitation are shown in Figure 4. These display some pronounced latitudinal
asymmetries: the highest mean correlatipfis(i,j)} > 0.9 occur in the Tropics, where barotropic
atmospheric dynamics tend to mitigate against chaotic fluctuations. Here, the high-correlation areas
include continental regions in Amazonia, equatorial Africa, and southeast Asia. However, at most extra-
tropical locations where baroclinic dynamics prev#i,(i, j)} < 0.7, implying that one realization of ex-
tratropical seasonal precipitation typically explains less than half the temporal variance of another. In
general, the cross-realization scaidn(i,j)} also is substantially higher outside the Tropics. (This
measure is not meaningful, however, where precipitation is scant, such as in northern Africa.) Some
ocean-land contrasts in the temporal reproducibility of model precipitation also are evident even in the
deep Tropics: mean correlatiop§ (i, j)} exceeding 0.9 cover broad swaths of the equatorial Atlantic
and Pacific, but only portions of the adjacent continents.



An aggregate measure of the continental temporal reproducibility of the seasonal cycle of
model surface variabM is provided by the spatial averaBeof each sample of the cross-realization
correlatiorr (i, j) over all land points. The meaf{R} and scatted{R} among tte N = 15realizations
of each seasonal land-surface variable are depicted in Figure 5a. The temporal reproducibility of the
land-surface variables ranges rather widely, with the ground and surface air tempetgiamesas)
showing the highest valuesfR}, and precipitationdr) the lowest. While the intraensemble scatter
O{R} (gray bars) is comparatively small for all the land-surface variables, it also tends to increase as
K{R} decreases. Thus, these summary statistics present a consistent picture of the variations in
temporal reproducibility displayed by model land-surface variables that include the seasonal cycle.

In Figure 5b, thei{R} andd{R} statistics are displayed for monthly mean samples of the same
land-surface variables with the annual cycle included. As mentioned in Section 3a, the monthly land-
surface variables all exhibit somewhat less temporal reproducibility than at the seasonal time scale
(Figure 5a), owing to the comparatively greater sensitivity of the monthly statistics to varying initial
conditions. This behavior appears to be especially pronounced for land-surface precipitation (

Spatial reproducibility

The spatial reproducibility of simulated land-surface variables that include the seasonal
cycle, as exemplified by the variation of the mean cross-realization pattern correlgsién; for
precipitation, shows substantial variation with season k (Figure 6). Overjdsk)} displays a
pronounced sawtooth fluctuation each year (Figures 6b, 6¢), with maxima repeatedly occurring in
JJA and DJF and minima in MAM and SON. (The modest scadi{s(k)} indicates that each
realization shows a similar tendency for maximum spatial reproducibility in the extreme seasons.)
Sawtooth fluctuations also characterize fig(k)} time series for global precipitation (Figure 6a),
except in 1983 and 1987 when this pattern is disrupted, possibly related to incidences of El Nifios
in these years (see Section 4c). In addition, some interannual modulation of the amplitude of
p{s(k)} can be seen for both global and continental precipitation, but the average pattern
correlation is greatest for tropical land points (Figure 6c).

Time series ofu{ s(k)} exhibit the same behavior for all the other land-surface variables
except soil moisture, which instead peaks in MAM and SON each year (not shown).
Nonetheless, it is physically reasonable that the time series of this storage variable should be in
guadrature with that of precipitation, signifying soil moisture’s potential as a predictor of
seasonal climate (e.g. Huang et al. 1996).



Spatial reproducibility of seasonal climatologies

Because model intercomparison projects often are limited to analysis of single realizations of
participating models’ climates, it is relevant to consider the reproducibility of the ECMWF surface
variables’ seasonal climatologies (i.e., the decadal-mean MAM, JJA, SON, and DJF climates). We
did so by computing the mean and scatter of the spatial pattern correlations between the N = 15
independent pairs of realizations of the seasonal climatology of a surface varidbé were
available. For all variables and seasons, the resulting mean correlations were ~ 1, and their scatter
less than ~ 0.03. We conclude that the intercomparison of single realizations of seasonal surface
climatologies from a collection of GCMsith common ocean boundary conditions and radiative
forcingsis indeed likely to be a meaningful exercise.

c. Reproducibility of seasonal anomalies

From the standpoint of seasonal prediction, it is the reproducibility ofdeq@arturesof
surface variabl&/ from its climatological seasonal cycle which is of interest. That is, the state of
V in a particular season is assumed predictable to the extent that its seasonal anomalies are
reproducible; otherwise, the seasonal climatology offers a better prediction. However, because the
ECMWEF model’'s ocean state is not prognostically determined, these reproducibility measures
allow only the inference of a variable’s potential predictability (hereaR®&), a presumed upper
bound on the operational forecast skill (Madden 1981)

Thus, to infer thePP of seasonal surface variablewe remove the ten-year climatological
seasonal cycle from its time series, and then compute the cross-corretaimsof the resulting
seasonal anomal for each independent pair of realizations. As summary measures, we again
also calculatgr andd statistics from the N = 15 independent samplasanid s.

Temporal reproducibility of seasonal anomalies

As examples of this procedure, maps of the mean cross-realization corrgift{(oj)} and
its scatted{r(i,j)} for seasonal anomalies of surface air temperature are displayed in Figure 7.
Given the prescribed ocean state, it is not surprising that the anomalies of marine surface air tem-
perature show good temporal reproducibility (i.e., high(i,j)} and low &{r(i,j)}). There also
are a few continental locations--e.g. parts of Amazonia, equatorial Africa, and southeast Asia--
where the temporal reproducibility is comparatively high. However, over most of the land
surface each realization explains, on average, less than 25% of the interannual variance of
another (i.ep{r (i,j)} <0.5); moreover, the cross-realization scadg(i,j)} mostly exceeds 0.1.
A gqualitatively similar pattern is displayed by the anomalies of ground temperature and of the



net fluxes of surface shortwave and longwave radiation (not shown). Apparently the model's
radiative/thermal anomalies are temporally reproducible to a substantial extent at only a few
continental locations in the deep Tropics.

This assessment is even more appropriate for the seasonal anomalies of continental precipitation,
which display generally lower values ¢fr (i,))} and higher values o®{r(i,j)} (Figure 8). Other
hydrological variables (e.g. surface evaporation and soil moisture), as well as the surface sensible heat
flux, exhibit similar behaviors (not shown). These results also are in general agreement with studies of
PP of a more limited set of land-surface variables in other models (e.g. Dirmeyer et al. 2001).

More geographically widespread temporal reproducibility is evinced by the anomalies of
continental sea-level pressure (Figurel§)(i,j)} values in excess of 0.3 extend farther poleward than
for any other surface field considered, e.g. to western North America and northern parts of Australia.
The cross-realization scat@®r(i,j)} also is generally less than that for other land-surface anomalies.

An overall summary of the temporal reproducibility of each land-surface anomaly variable is
provided by the meap{R} and scatted{R} for land-average® of r(i,j), which are depicted in
Figure 10. The highest all-land mean correlatipfiR} are displayed by the anomalies of sea-level
pressuregsl), surface air temperatur&ag), and ground temperaturtgj, and the lowest correlations
by the anomalies of surface evaporatieng, precipitation pr), and sensible heat flukf{ls). All-
land values ofu{R} are generally much lower for the anomalies of Figure 10a than for the
corresponding surface variables which include the seasonal cycle (Figure 5a). The all-land scatter
O{R} of the anomalies (gray bars) in Figure 10a is also a larger fractipgR)f than in Figure 5a,
especially for the precipitatiorp(), evaporation €vg, and sensible heat fluwhfls). The relative
positions of the surface anomalies in descending order of their alligidalso differ in Figures 10a
versus 5awith the greatest dissimilarities being displayed by sea-level pregsi)re (

For every model surface anomaly, however, the tropical-land avesijeis substantially
higher, and its scattéfR} lower, than the corresponding all-land statistics (compare Figures 10a and
10b). Especially noteworthy are the sea-level presqsie&nd surface air temperatuitag), whose
tropical-landu{R} exceed 0.40 with low scattéR}. On the other hand, the relatively low tropical-
landp{R} and highd{R} of precipitation pr), soil moisture rso), and surface evaporatioays is
discouraging, in view of the socio-economic import of these hydrological variables.

Spatial reproducibility of seasonal anomalies

The time series of mean cross-realization pattern correlgiis(k)} for anomalies of
precipitation (Figure 11) and sea-level pressure (Figure 12) bracket the range of spatial
reproducibilities exhibited by the model’s seasonal surface variables. For instance, there are many



seasons k whep{s(k)} for the global precipitation anomalies is > 0.5 (Figure 11a), but only a few
cases of comparable mean pattern correlations for the pressure anomalies (Figure 12a). There also
is much less scatté{s(k)} in the time series of the precipitation anomalies (compare separation of
dashed and solid lines in Figures 11 and 12), apparently because their spatial patterns are more
consistent across realizations than those of the pressure anomalies.

However, the spatial reproducibility of the precipitation anomalies is substantially reduced
over land (compare Figures 11a and 11b), especially in middle and high latitudes (compare Figures
11b and 11c). The continental sea-level pressure anomalies also are much less spatially reproducible
outside the Tropics (compare Figures 12b and 12c); however, in contrast to global precipitation
(Figure 11a), thei{s(k)} of the pressure anomalies increase only marginally when ocean points are
included in the calculations (compare Figures 12a and 12b). (A selective comparison of maps of the
six realizations of sea-level pressure anomalies at particular years/seasons indicated that pattern
differences were especially pronounced in polar latitudes.)

From Figures 11 and 12, itis evident that the spatial reproducibility of the seasonal anomalies
fluctuates markedly in time. The largest peakg{a(k)} coincide with occurrences of El Nifios in
1982/83 and 1986/87; in some cases, smaller peaks occur at times of La Nifias in 1984/85 (Figures
1laand 11c) andin the latter part of 1988 (Figures 11a and 12c). At such times, the reproducibility
of the continental anomalies is more pronounced in the Tropics (Figures 11c and 12c), but a
substantial extratropical signal in MAM 1983 is associated with the exceptionally intense 1982/83
El Nifilo (Figures 11b and 12b). Other investigators (e.g., Brankovic et al. 1994, Anderson and
Stern 1996, Bengtsson et al. 1996, Zwiers 1996) also have noted a propensity for global
predictability to peak in the MAM season following onset of an El Nifio in the latter part of the
previous year. The timing is thought to be related to the maximal extent of tropical SSTs exceeding
28 deg C (a threshold for convection), and a dynamical basic state that expedites tropical-
extratropical interactions (Hoerling et al. 1995, Higgins and Halpert 1997, Sud et al. 1999).

Figure 13 displays the MAM 1983 ensemble-mean anomaly fields (averaged across the 6 model
realizations) of sea-level pressure, surface air temperature, and precipitation. Shaded areas indicate
where these anomalies are significantly different (at the 95% confidence level) from other MAM
seasons in years without El Nifios--that is, in all other years of the simulation decade except 1987. (The
significance test utilizes a nonparameteric Kolmogorov-Smirnov statistic that is especially suited for
non-Gaussian variables such as precipitation--see Anderson and Stern 1996.)

Several significant anomalies commonly associated with El Nifios (e.g. Quiroz 1983,
Ropelewski and Halpert 1987, Barnett 1988, Kiladis and Diaz 1989, Kane 1997) are present in Figure
13. These include pronounced Southern Oscillation and North Pacific pressure anomalies (Figure
13a); anomalous warming of tropical continents and of northern/western North America, with cooling
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of boreal continental interiors (Figure 13b); and abnormally wet/dry conditions in the eastern/western
tropical Pacific (Figure 13c). (The canonical precipitation anomaly centered in the southeastern U.S.
during EI Nifios is more evident in the analogous map for the preceding DJF season, not shown here.)
The temperature anomalies (Figure 13b) are most widespread over the extratropical continents, and the
precipitation anomalies (Figure 13c) are least so, but the latter are more extensive in this season than
is the model norm (e.g. Figure 8).

Figure 14 depicts the overall spatial reproducibility of the model land-surface anomalies.
Summary statistics include the mean and scaf&} andd{ S} of the time-averagé of the series
of cross-realization pattern correlations s(k), sedse 1, ..., 39, that are computed alternatively
over all-land (Figure 14a) and tropical-land points (Figure 14b). The mean and $daitérand
o{ M}in the maximumM of each all-land and tropical-land time ser&k) also is displayed in
Figures 15a and 15b, respectively.

In contrast to their relatively high temporal reproducibility (Figure 10a), the all-land sea-level
pressurdépsl) anomalies exhibit the least spatial reproducibility (lowgs$} and highes®{ S}) of
any surface variable (Figure 14a). The ground and surface air temperature anotgaliestés)
display similar tendencies; conversely, anomalies of precipitajo), €vaporation vy, and
sensible heat flux hfss) show relatively high spatial reproducibilitybut low temporal
reproducibility. This apparent spatio-temporal asymmetry may be physically based (e.g. indicating
that the continentgbr, evs andhfssanomalies are more likely to occur in certain locations), or at
least may be indicative of present-day GCM land-surface simulations (e.g. Phillips et al. 2000).
However, this asymmetry also may partly reflect differences in statistical sampling, iR tisad
spatial average over several thousand grid points, ihdea temporal average over just 39 seasonal
samples. Becaudethus is likely to be more statistically robust thgthe summary information in
Figure 10 probably should be emphasized over that of Figure 14 for purposes of ranking the overall
reproducibility of the model’s land-surface anomalies. (Nonetheless, if these preliminary indications
of higher spatial reproducibility of the hydrological variables and turbulent fluxes are borne out in
other predictability studies, this could have considerable utility in operational seasonal forecasting.)

From a comparison @f{ S} andd{ Stover only tropical land points (Figure 14b), it is seen that
the relatively low all-land spatial reproducibility of certain model anomalies mainly owes to their
behavior over extratropical continents. This tropical-extratropical asymmetry in pattern correlations
is especially striking for the sea-level pressysl{anomaly, but is also clearcut for soil moisture
mrso, radiant fluxesrss andrls, and surface wind stressésuu andtauv. Similarly, the mean
maximap{ M} of the tropical-lands(k) time series (Figure 15b) are substantially higher than those
for all-land points (Figure 15a). Nonetheless, the timing{d¥} for most anomalies coincides with
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the intense 1982/83 EI Nifio (designated by bracketed anomaly labels in Figures 15a,b), irrespective
of whether the pattern correlations include all-land or only tropical-land points.

5. Comparisons With Conventional Measures of Predictability

The mean correlationgr(i,j) } andp{ s(k)} are likely to be comparatively robust measures of
reproducibility since, for the given ensemble size n = 6, they are derivedNre 15independent
samples of ands. Howeverr andsthemselves are computed from gridded seasonal data that are
not statistically independent, since they are serially/spatially correlated with data at neighboring
seasons and grid points. This complicates the estimation of threshold values sthat would
signify the likely presence dPP. Although such thresholds could be empirically determined, for
example by use of resampling techniques, the resulting criteria would be variable-specific (e.g.
Livezey and Chen 1983). As an alternative, we will show that inferenc&Pdfased o ands
compare well with conventional measures of predictability having more clearcut thresholds.

Here we present the results of applying two such measures: a fractional variance $tatistic
and a forecast skill scorederived from the spatial pattern correlation of simulated vs. observed
anomalies. Note, however, that these metrics both are obtained at the cost of reducing the effective
sample size fromN=15ton=6.

a. Fractional variance measure

The fractional variance measufrés an estimate of the portion of the total variabiliy? of
climate variablé/ that is attributable to the ocean boundary foraixﬁ, as opposed to the internal

variability 0,2 that is assumed to be unpredictable (Madden 1981):

— 2 2
f= GB /GT
where

o12= 052+ 0,2

In this framework, a conservative threshold that implies the likely preserﬁd%issz >0 2 orf>0.5.

Analogous to the temporal reproducibility the statistid is computed at each grid point (i, j); in
addition,f usually is determined as a function of climatological seasge. MAM, JJA, SON, and
DJF), thereby allowing investigation of putative seasonal variatioRB.in
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Following Kumar and Hoerling (1995), we estimamagl2 from the ensemble-mean interan-

nual variability ofV in seasort, andg,? from the intraensemble variability of the different model

realizations of seasan where in both cases the sample size is n = 6. Mapgkifure 16) suggest

that the inferredPP of the model’s sea-level pressure displays greater extratropical extent than that
of other land-surface variables, notably over western North America during JJA and over Australia
during DJF. The surface air temperature also exhibit app&®miver parts of North America in
MAM (Figure 17), a pattern reminiscent of what Zwiers (1996) reported for the 850 hPa tempera-
ture field in another model. More typical of the land-surface variables, however, are the niaps of
for precipitation (not shown), which show very little evidenceR#® outside the deep Tropics.
Thus, inferences oPP derived fromf are very similar to those determined from the temporal
reproducibility statistic (see Figures 7-9)

b. Forecast skill measure

In operational forecasting, a common measure of predictive skill is the spatial pattern
correlationc of the simulation with observational estimates. For each of the k = 39 seasons in the
AMIP decade, we computed the pattern correlati) of the ensemble-mean anomalyof each
surface variable against a single realization of the observed anomaly, as approximated by NCEP-
NCAR reanalysis data (Kalnay et al. 1996) over the same time period. (The ensemble-mean
anomaly being the most likely prediction of the observed climate.) Following Zwiers (1996), we
also estimated the uncertainty afk) as the average scatter among the correlations of the 6
realizations oA with the reanalysis.

Plots ofc(k) and its average scatter are displayed for sea-level pressure and precipitation in
Figures 18 and 19, respectively. The threshc(k)=0.50 (denoted by dot-dash lines in these
figures) indicates a minimum level of effective forecast skill, in the sense that the prediction may
be of some practical value (Kumar and Hoerling 1995). By this criterion, effectively skillful
seasonal forecasts of both global and all-land sea-level pressure occur in only a few seasons during
the AMIP decade (Figures 18a, b). The prediction of continental pressure is more frequently skill-
fulin the Tropics, sometimes for several seasons in a row (Figure 18c), but even here there are wide
inter-seasonal swings io(k), with a number of negative-valued correlations. (Td{k) skill
statistic is known to be quite “unforgiving”, often yielding negative values.) @k for global
precipitation are all positive-valued, but there is only a single instance of an effectively skillful
forecast (Figure 19a). There are no effectively skillful predictions of continental precipitation,
however, even when evaluation is limited to the Tropics (Figure 19b, c).
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The contrast between the more frequently skillful but “erratic” pressure correlations and the less
skillful but “consistent” precipitation correlations is captured by the time-n@@and the maximum
M of the respective time seriegk). The all-land and tropical-land values Gf together with its
estimated uncertainty is displayed for the 11 model surface anomalies in Figures 20a and b, while the
corresponding maximil are shown in Figures 21a and b. It is seen that the all-¢gdx)dime series
for the sea-level pressurpg]) anomaly exhibits the lowest me#& but the highest maximurii
(Figures 21a and b, respectively). The uncertainty in all-l&hdor the psl anomaly is also
comparatively very large, especially relative to the magnitude @figure 20a). In contrast, the all-
land c(k) series for the precipitatiorpf) anomaly has a low maximui, but the highest mea@,
along with a relatively low uncertainty. These results are reminiscent of the summary statistics of
spatial reproducibility of the surface anomalies in Figure 14, where the all-land p{&of the
time seriess(k) is largest for precipitation and smallest for sea-level pressure, and where there is
substantially more scattdf S} in the latter case.

In Figure 20a, the all-lan@ statistics for precipitation and sea-level pressure bracket the range of
values for the other surface anomalies: relatively Riglalues are displayed by soil moistuneréo) and
the net shortwave/longwave radiative fluxessfls), relatively low values by the northward wind stress
(tauv) and ground temperaturtg), and intermediate values by the remainder of the anomalies. There
also is a sharper differentiation in the all-lalWdstatistics among the surface anomalies (Figure 21a):
besidepsl, only the ground and surface air temperatuigaiidtas) show evidence of effective forecast
skill (M > 0.50).

Over the tropical continents; increases from its all-land value for every surface anomaly
(compare Figures 20a and b). The increase is proportionately greater for ground and surface air
temperaturest§ andtas), for the surface wind stressesu andtauv), and especially for sea-
level pressuredsl), whereC shifts from the lowest all-land value to the highest tropical-land value.
For most land-surface anomalies, the maximMiof the tropical-landc(k) time series (Figure
21b) also exceeds its all-land value (Figure 21a) Ndut 0.50 only for the tropical-lanths, tauu,
andpsl anomalies.

It is also noteworthy that the relative ranking of the all-land anomalies in Figure 20a (in
descending order of all-lan@ valueg roughly corresponds to that derived from the all-la§&}
values of Figure 14a. However, the impact of the 1982/83 El Nifio on the maMiroathe land-
surface correlations(k) is reduced (compare the number of bracketed anomaly labels in Figures
15a,b versus Figures 21a,b): it is limited mainly to precipitat@wr &nd soil moisturerqirso). (The
maximaM of the c(k) time series of other land-surface variables occur in various seasons/years,
only some of which correspond to ENSO events. )
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The contrasting behaviors illustrated by Figures 14/15 versus Figures 20/21 highlight the
differences between predictability statistics that are model-dependent,(B.g5, S, andf) and
those more demanding metrics that reference validation data external to the modglGeand
M). However, to attribute the causes of all the differences between Figures 14/15 and Figures
20/21 to model shortcomings seems quite unjustified, especially for land-surface processes such
as turbulent fluxes and soil moisture that are mainly determined by the parameterizations of the
reanalysis model, or that may be biased by the particular assimilation/nudging techniques
employed (M. Kanamitsu, personal communication). It should be acknowledged as well that
validation of model predictions against observations is an inherently probabilistic exercise, since
nature only provides a single realization of the observed climate, which need not correspond to
the ensemble-mean state of even a hypothetically “perfect” model.

6. Discussion

In this study we have analyzed the initial-condition sensitivity of 11 seasonal surface variables
in an ensemble of 6 ECMWEF (cycle 36) model simulations of decadal climate, with common
specification of AMIP radiative and ocean boundary conditions. To quantify this sensitivity, we
computed spatio-temporal measures of intraensemble reproducibility, with particular attention to
their values at the land surface. We considered the reproducibility of the surface variables when the
seasonal cycle was included or excluded, since the former configuration is relevant for model
intercomparison projects, and the latter for seasonal climate forecasts. Here we elaborate possible
ramifications of our study for both these endeavors.

a. Implications for model intercomparisons

Because chaos complicates the analysis of a climate simulation, it is well to focus a model
intercomparison project on variables that display low sensitivity to initial conditions. Our
reproducibility measures indicate this to be the case for most land-surface variables that include the
seasonal cycle, with the possible exception of precipitation and surface wind stresses. However, the 10-
year seasonalimatologiesof even these highly chaotic variables proved to be spatially reproducible to
a very great degree. This suggests that the comparison of seasonal land-surface climatologies across
different atmospheric GCMs is likely to be a meaningful exerg@seyided that common radiative
and ocean boundary conditions are specified, such as in the AMIP experin{éhts.
intercomparison of modelshonthlyclimatologies seems somewhat more problematical, however, in
view of their greater sensitivity to initial conditions.)
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A more fundamental problem for intercomparison projects focussing on the effects of different
coupled land-surface schemes is that simulations of continental climate reflect the biases of the
atmospheric models’ surface forcings (e.g. net radiation or precipitation), thus making it difficult to
assess the degree to which the different embedded land-surface schemes influence the simulation.
In principle, the effects of these biases could be reduced by intercomparing the models’ land-surface
anomalies (i.e. the departures from the respective seasonal cycles). However, our study shows this
to be an inadequate general strategy for single realizations of each model’s climate, given the highly
chaotic behavior of these anomalies outside the deep Tropics.

Such an approach would only be effective if multiple realizations of seasonal land-surface
climate were available for each model, so that the reproducible part of each anomaly could be
estimated from its ensemble mean; however, many realizations probably would be needed for an
accurate estimate of this type (Barnett 1995, Wehner 2000). Because such a computationally
intensive model intercomparison project is still rather impractical, other methodsosteriori
reduction of the effects of model biases in single realizations need to be explored. For example, one
potentially promising approach is to construct dimensionless ratios of response/forcing variables to
elucidate essentially different behaviors of coupled land-surface schemes (Gedney et al. 2000).

b. Implications for seasonal forecasting

In this study we also inferred the potential predictabil®pf of the ECMWF model’s land-
surface climate by computing measures of the spatio-temporal reproducibility of the seasonal
anomalies of like variables in the ensemble. There was a considerable range in the overall
predictability of the model's land-surface processes, with continental surface pressure and
temperature exhibiting generally higHeiP than the hydrological variables or the turbulent fluxes;
however, there were preliminary indications that the spatial pattern of the latter processes may be
somewhat more predictable than that of the former. Surface pressure and temperature also
manifestedPP over the extratropical continents, albeit only in selected regions and seasons (see
Figures 16 and 17). The overdHP of the model's seasonal continental climate was really
substantial only in the deep Tropics, however. These results were consistent with those implied by
more conventional predictability measures.

The PP of the simulated seasonal continental climate also was perceptibly enhanced during
ENSO events, in particular the intense 1982/83 El Nifilo. However, the ENSO teleconnection was
not as evident when the predictions of the ECMWF model were compared against an independent
validation reference such as the NCEP-NCAR reanalysis data: in this context, the relationship of
the ENSO to the model’s continental climate seemed quite tenuous outside the Tropics.
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These rather sobering implications for the potential predictability of extratropical continental
climate from SSTs alone need to be tempered by consideration of several means for enhancing
seasonal forecast skill. First, in contrast to our experiments, operational seasonal predictions usually
proceed from initial conditions specified from the observed atmospheric state (e.g. as provided by
analysis products), so that some additional predictive skill may be imparted by atmospheric
persistence, at least in the earlier stages of the seasonal forecast (e.g. Dirmeyer et al. 2001).

There is also considerable evidence (e.g. Huang et al. 1996, Wang and Kumar 1998, Cohen and
Entekhabi 1998, Ferranti et al. 1999, Koster et al. 2000, Dirmeyer 2001) that seasonal predictive skill
can be enhanced by accurate specification of other sources of climate memory such as snow cover
and soil moisture (where the latter is treated as a predictor variable rather than a predictand, as in our
study). Additional knowledge of the ocean state (other than provided by SSTs) also may yield an
enhanced set of seasonal climate predictors (e.g. Phillips 1992, Griffies and Bryan 1997). Progress
on these fronts no doubt will be closely tied to integrated remote sensing and modeling initiatives
promoted by the World Climate Research Programme and similar international collaborations.

Seasonal predictions also may be enhanced by intelligent use of statistical forecasting
techniques: because the land-surface variables are correlated, skillful dynamical forecasts of
selected fields can impart statistical knowledge of others (Barnston and Smith 1996). Enhanced
forecast skill may also be realized by reducing systematic model errors through statistical correction
technigues (Smith and Livezey 1999, Feddersen et al. 1999), by combining dynamical and statistical
forecasting techniques (Anderson et al. 1999), or by utilizing ensemble forecasts from more than
one model (Mason et al. 1999).

Finally, we reiterate that the predictability of land-surface climate is partly a function of model
performance (Kumar et al. 1996, Sperber and Palmer 1996, Liang et al. 1997, Zwiers and Kharin
1998, Sperber et al. 1999). Hence, with future advances in computer technology facilitating
increasingly realistic simulations of continental processes, there is reason to anticipate substantial
further progress in our ability to predict seasonal land-surface climate.
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Table 1: Surface variables considered in this study, listed in alphabetical order of their AMIP acronym, with units.

Surface Variable AMIP Acronym Units
Evaporation evs mm day*
Sensible Heat Flux hfss W m2
Soil Moisture mrso cm
Precipitation pr mm day!
Sea-level Pressure psl hPa
Net Longwave Radiation rls W m?
Net Shortwave Radiation rss W m?
Surface Air Temperature* tas deg C
Eastward Wind Stress tauu Nt m™2
Northward Wind Stress tauv Nt m™
Ground Temperature** tg deg C

* Temperature of the lowest vertical level of the model atmosphere#1.996, equivalent to a height ~ 30 meters above
the surface.

** Equivalent to the surface skin temperature.
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Figure 1: Maps of the interannual variance of JJA mean sea-level pressure, a) as simulated by the ECMWEF (cycle 36) model and b) as obtained fronRNCEP-NCA

reanalysis data; and maps of the interannual variance of DJF mean sea-level pressure, c) as simulated, and d) as obtained from the reantdysie dﬂ?aﬁ)LNnjte,
the variances in a) and ¢) are calculated over 6 simulated realizations of the seasonal climates of 1979-1988, while those in b) and d) ar@natbelatedlé available
realization of the reanalysis climate over the same period.
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Figure 2: As in Figure 1, except for surface air temperature. Units are (%Jeg C)
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Figure 3: As in Figure 1, except for precipitation. Units are (mnitjfay



Figure 4: Maps of a) the meaijr (i, j)] of zero-lag temporal cross-correlatior$, j) for seasonal precipitation as
simulated for the AMIP decade by the ECMWEF (cycle 36) model, and b) the associated cross-correlation scatter
o[r(i, j)]. The statisticgt andd are determined from N=15 independent pairings of decadal seasonal realizations

with the seasonal cycle included.
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Figure 5: The meap{R} (dark bars) and scatt&R} (low-valued gray bars) of temporal correlatioRsover all land

points are shown for 11 ECMWF model surface variables (see Table 1 for acronym definitions), where in a) the
variables include the seasonal cycle (i.e. time series of MAM, JJA, SON, and DJF means), while those in b) include the
annual cycle of monthly means. In both casesRlstatistics are computed from N=15 independent realizations of the
temporal cross-correlationi,j), and the surface variables are arrayed from left to right in descending order of their
W{R} values. As arbitrary common references in a) and b), the dashed horizontal lines indicate correlation/scatter values
of 0.8.
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Figure 6: Time series of the mepfs(k)] of spatial pattern cross-correlations for seasonal precipitation as simulated for the
AMIP decade by the ECMWF (cycle 36) model (solid lines) and the associated cross-correlatiordgtijigidashed

lines). The statisticgt andd are determined from N=15 independent pairings of decadal seasonal realizations with the
seasonal cycle included. The time series includes 39 seasonal samples k, the first for the MAM 1979 season, and the last for
the SON 1988 season. As arbitrary common references, the dashed horizontal lines indicate spatial pattern correlation values
of 0.8. In a) the pattern correlations are computed globally, in b) they are computed over land points only, and in c) over
tropical land points only (30 S to 30 N).



Figure 7: Map a) of the megur (i, j)] of zero-lag temporal cross-correlatiaiigj) for seasonal anomalies (i.e. excluding
the seasonal cycle) of surface air temperature, as simulated for the AMIP decade by the ECMWF (cycle 36) model, and map
b) of the associated intraensemble scaifefi, j)]. The statisticst andd are determined from N=15 independent cross-

correlations of decadal realizations of these anomalies.



Figure 8: As in Figure 7, except for seasonal anomalies of precipitation.



Figure 9: As in Figure 7, except for seasonal anomalies of mean sea-level pressure.
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Figure 10: The meap{R} (dark bars) and scatt&{R} (gray bars) of land-average temporal cross-correlati®ifigr

11 seasonally averaged ECMWF model surface anomalies (see Table 1 for acronym definitions) are shown, in a) for

correlations over all land points, and in b) for correlations only over tropical (30 S to 30 N) land points. In both cases,

the R statistics are computed from N=15 independent realizations of the temporal cross-correl@fioresd the

surface anomalies are arrayed from left to right in descending order of their all{R}d/alues. As arbitrary common

references in a) and b), the dashed horizontal lines indicate mean correlation/scatter values of 0.2.
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Figure 11: Time series of the meaf s(k)} of spatial pattern cross-correlatios&) for seasonal anomalies of
precipitation (in blue), and the associated scaifs(k)} (in red), as simulated for the AMIP decade by the ECMWF
(cycle 36) model. The time series comprises 39 seasonal samples k, the first at MAM of 1979 and the last at SON of
1988. (The MAM points are situated just to the right of the major tick marks labeled by each year on the abscissa.) As
arbitrary common references, the dashed horizontal lines indicate correlation/scatter values of 0.5. In a), the pattern
correlations are computed globally (both land and ocean points), in b) only over land points, and in c) only over tropical
(30 S to 30 N) land points. In all cases, the statistics are computed from N=15 independent realizations of the spatial
pattern correlations(k).
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Figure 12: As in Figure 11, except for seasonal anomalies of sea-level pressure.
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Figure 13: Maps of the average seasonal anomalies (isolines) of a) mean sea-level pressure, b) surface air temperature, and
C) precipitation computed across 6 realizations of the season MAM 1983 that coincided with an historically intense El Nifio.
The shading indicates where these mean anomalies are significantly different (at the 95% confidence level) from those in the
MAM season of the other years of the decade 1979 to 1988 in which an El Nifio did not occur (i.e., MAM of all years except
1987). See the text for further explanation.
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Figure 14: The meap{S} (dark bars) and scatté{S} (gray bars) of the time-averag® of the series of pattern
correlations s(k), season k =1, ..., 39 for 11 seasonally averaged ECMWF model surface anomalies are shown, in a)
for s(k) over all land points, and in b) fak) only over tropical (30S to 30N) . The dashed horizontal lines indicate
arbitrary reference correlation/scatter values of 0.2. In both panels, the statistics are computed from N = 15
independent realizations of the spatial pattern correlasfk)sand the surface anomalies are arrayed from left to right

in descending order of their all-lapdS} values in a).
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Figure 15: The mean maximup{M} of each anomaly’s series of pattern correlations s(k), season k =1, ..., 39 for 11
seasonally averaged ECMWF model surface anomalies are shown, in a) for all-land pattern correlations,and in b) for
tropical -land(30S to 30N) correlations , where the dashed horizontal lines indicate arbitrary common reigvBnce
values of 0.5. In a) and b) also, brackets ([]) surrounding the surface anomaly label indicate coincigghgewith

the intense 1982/83 El Nifio. In both panels, the statistics are computed from N = 15 independent realizations of the
spatial pattern correlatiorsék), and the surface anomalies are arrayed from left to right in descending order of their all-
landu{S} values, as depicted in Figure 14a).
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Figure 16: Geographical distribution of the fractibaf variance of sea-level pressure explained by the common ocean
boundary forcing in seasons a) JJA and b) DJF. Shaded areas f > 0.5 are indicative of a potentially predictable signal.
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Figure 17: As in Figure 16, except for surface air temperature in seasons a) MAM and b) JJA.
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Figure 18: Time series of spatial pattern correlatiofh3 of the ensemble-mean seasonal anomaly of simulated mean
sea-level pressure against that from the NCEP-NCAR reanalysis data (in blue) and the estimated uncesti)nty in

(in red). The time series includes 39 seasonal samples k, the first at time point MAM of 1979 and the last at time point
SON of 1988. (The MAM points are situated just to the right of the major tick marks labeled by each year on the
abscissa.) The horizontal dashed lines indicate correlations of 0.5, which signify a minimum level of practically useful
forecast skill. In a) the spatial pattern correlations are computed globally, in b) over all land points, and in ¢) only over
tropical (30 S to 30 N) land points.
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Figure 19: As in figure 18, except for seasonal anomalies of precipitation.
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Figure 20: The time-mearG (dark bars) of the seriegk), seaso k = 1,...,39 of pattern correlations of the model’s
ensemble-mean seasonal land-surface anomalies with their counterparts from the NCEP-NCAR reanalysis, along with
the estimated uncertainties (gray bars) are shown, in @jfpover all land points, and in b) fa(k) only over tropical

(30 S to 30 N) land points. As arbitrary common references, the dashed horizontal lines in a) and b) indicate
correlation/uncertainty values of 0.1. In both panels, the statistics are calculated from n = 6 independent model
realizations and from a single realization of the NCEP-NCAR reanalysis, and the surface anomalies are arrayed from
left to right in descending order of their all-laGdsalues, as depicted in a).
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Figure 21: The ensemble-mean maxiMaof the seriex(k), seasa k = 1,...,39 of pattern correlations of ensemble-

mean seasonal model land-surface anomalies and their counterparts from the NCEP-NCAR reanalysis are shown, in
a) for all-land points, and in b) only for tropical-land (30S to 30N) points. In a) and b), the dashed horizontal lines
indicate anomaly pattern correlations of 0.5, corresponding to a practically useful level of forecast skill. In both panels
also, bracket ([]) surrounding the surface anomaly label indicate where there is a coincidence of the corresponding
maximumM with the intense 1982/83 El Nifio. In both a) and b), the statistics are calculated from n = 6 independent
model realizations and from a single realization of the NCEP-NCAR reanalysis, and the surface anomalies are arrayed
from left to right in descending order of their all-la@dralues, as depicted in Figure 20a).
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