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Abstract

The global water vapor distribution for five observational based data sets and
three GCM integrations are compared. The variables considered are the mean and
standard deviation values of the precipitable water for the entire atmospheric column
and the 500 to 300 hPa layer for January and July.

The observationally based sets are the radiosonde data of Ross and Elliott, the
ERA and NCEP reanalyses, and the NVAP blend of sonde and satellite data. The
three GCM simulations all use the NCAR CCM3 as the atmosphenc model. They in-
clude: a AMIP type simulation using observed SSTs for the period 1979 to 1993, the
NCAR CSM 300 year coupled ocean - atmosphere integration, and a CSM integration
with a 1% CO2 increase per year.

The observational data exhibit some serious 1ncon51stenc1es There are geo-
graphical patterns of differences related to interannual variations and national in-
strument biases. It is clear that the proper characterization of water vapor is
somewhat uncertain. Some conclusions about these data appear to be robust even giv-
en the discrepancies. The ERA data are too dry especially in the upper levels. The ob-
servational data evince much better agreement in the data rich Northern Hemisphere
compared to the Southern. Distinct biases are quite pronounced over the Southern
Ocean. The mean values and particularly the standard deviations of the three reanal-
yses are very dependent upon the GCM used as the assimilation vehicle for the anal-
yses. This is made clear by the much enhanced tropical variability in the NCEP/DOE/
AMIP reanalyses compared the initial NCEP/NCAR Reanalysis.

The NCAR CCMS3 shows consistent evidence of a dry bias. The 1% CO2 experi-
ment shows a very similar pattern of disagreement with the sonde data as the other
integrations, once account is taken of the warming trend. No new modes of difference
are evident in the 1% CO2 experiment. All the CCM3 runs indicated too much Trop-
ical variability especially in the western Tropical Pacific and Southeast Asia.

A EOF analysis of the interannual variations of the zonally averaged precipita-
ble water and the 500 to 300 hPa layer reveals fundamental differences in the struc-
ture of the variations. The impact of ENSO and variations of the ITCZ have only a low
level of correspondence between the observed data, much less the simulations.

It is apparent that an adequate characterization of the climatology of the global
water vapor distribution is not yet at hand.
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1.  Imtroduction

The distribution of water vapor m the atmosphere in a real sense is what makes
weather and climate. Water vapor is the most active greenhouse gas and through
feedbacks exerts a powerful influence on the climate system. Details of the distribu-
tion are undergoing even closer examination in the context of global warming studies.
In order to assess the magmtudes and nature of the vapor feedbacks-the distribution
both horizontally and vertically must be known to a fairly high degree of accuracy,
more accurately than it is now known. The second IPCC assessment (IPCC 1995)
states that “Feedback from the redistribution of water vapor remains a substantial
uncertainty in climate models”. Confounding the uncertainty in m‘odeling is the un-
certainty in the observations. Ross and Elliot (1996) document the considerable prob-
lems with the measurement of vapor in the radiosonde network. Regional and
temporal variations in the observations indicate serious inhomogeneties in the radio-
 sonde archive. Soden and Lanzante (1996) describe the 51gmﬁcant differences in sat-
ellite derived estimates of upper tropopspheric humidity and the difficulties in
reconciling these differences in light of the radiosonde uncertainties.

This paper compares the monthly mean water vapor content in five global, ob-
servationally based data sets and three integrations of the‘,NCAR Community Cli-
mate Model 3 / Climate System Model (CCM3/CSM). Differences in the observational
data sets provide a context in which to evaluate the products of the GCM integrations.

In the next section the observationally based data sets will be described, this will
be followed by a brief summary of the general circulation model (GCM) simulation da-
ta. Section 4 compares the January and June mean and standard deviations of colum-
nar and layer precipitable water across all the data sets. The next two sections will
review the annual cycle (January - July) and a empiricél orthogonal function (EOF)
analysis of the interannual variations. The last section will be a brief discussion and

some conclusions.
2. Observationally Based Data
a. Radiosonde

Radiosonde data for all its known shortcomings, is still the standard against
which other products are often judged. Although some remote sensing techniques are



proving to be valuable, none of these recently implemented monitoring devices can
supply the long time record of the sonde data. The sonde data offer the longest record
of water vapor measurement and are often used in the development of algorithms for
remote sensed data. The radiosonde data set used here is that of Ross and Elliot
(1996), hereafter RE. These data are monthly climatological means and standard de-
viations for the time period 1973 to 1995. These data have been subjected to an exten-
sive quality control described in the reference. The control procedures can eliminate
egregiously erroneous values but cannot overcome the subtle systematic biases in the
measurement instruments themselves. These possible biases in the data are fully dis-
cussed in RE, and will be brought up when d15cussmg the results. For the mean val-
ues we used the means generated from the 00 and 12 Z values, the standard
deviations used the 00Z data only as supplied in the RE data base. The data files pro-
vided seven layer precipitable water values for the following layers: Surface to
850hPa, 850 to 700hPa, 700 hPa to 500 hPa, 500hPa to 300 hPa, surface to 700 hPa,
surface to 500 hPa, surface to 300 hPa. Data above 300 hPa was considered to be too
unreliable to contribute any useful information.

b. Satellite/Rawindsonde

The NASA Water Vapor Project (NVAP) is a blending of satellite remote sensed
and rawindsonde data. The procedures for blending are described and Randel et al.
(1996). These data are in the form of monthly means and are available for the period
1988 to 1994. The data used here were obtained from the GEWEX CDROM. Note that
the rawindsonde data used in the blending procedui‘e is identical to that of Ross and
.. Elliot (see above) for the 1988 to 1994 vperiod. The analysis combines the retrievals
from the TIROS Operational Vertical Sounder (TOVS) and the Special Sensor Micro-
wave/Imager (SSM/I) with the radiosonde observations. The satellite data have their
own limitations. The SSM/I is only available over ocean regions and only produces
vertically integrated vapor values. The TOVS data encounter difficulties in unambig-
uously determining cloud free regions in which the retrieval algorithm is valid.

These data provide the columnar integrated values and well as layer precipitable
water for the Surface to 700 hPa, 700 to 500 hPa, and 500 to 300 hPa layers. Only the
TOVS and radiosonde data provided information for the individual layer water vapor.

c. Reanalyses data sets:



The products of three reanalyses efforts are used. The basic idea behind the re-
analyses is to process obs_érvational data using the same assimilation model and tech-
niques over the duration of the analysis period. This is in contrast to the analyses pro-
duced by the constantly changing operational assimilation systems. Reanalyses can
only keep the assimilation tools constant, it cannot alter the fact that the nature and
distribution of the input data is continually evolving. The reanalyses used are:

European Centre for Medium Range Forecast Re-Analysis (ERA). This spans the
period from 1979 to 1993 and is described by Gibson et al. (1997).

.The NCEP/NCAR Reanalyses. (NCEP) spans the time period from 1948 to 1998.
Only the 1979 to 1993 subset is used here. The procedures for these data are described
by Kalnay et al. (1996). '

The NCEP/AMIP-II DOE (NCEP2) Reanalysis spans the time period from 1979
to 1994. The subset of 1979 to 1993 is used here. This reanalysis is an effort to correct
some errors made in navigation of the input data and specification of boundary forc-
ing during the original NCEP reanalyses. In addition, some significant changes were
made to the assimilation model, Kanamitsu et al. (1999). )

d. Discussion

There are several reasons why the observationally based data might differ:

(1) Different time periods. An attempt was made to maximize the amount of
overlap for the observed data sets, but there are still large mismatches. Differences
can be attributed to interannual variations and changing instruments and proce-
dures. The short time duration of the NVAP data adversely affects the estimate of the
variability. The NCEP and NCEP2 reanalyses share the same time frame as the ERA,
1979 to 1993. :

Trenberth and Hurrel (1994), Trenberth (1995) and Zhang et al. (1997) 1nd1cate
that there was a secular change in the global circulation occurring in the late 70’s. The
Southern Oscillation Index (not shown) shows evidence of a break about 197 8, with
more frequent and intense ENSO events occurring after this time. Thus, the RE data
which spans this change might have systematic differences from data set which are
sampled after 1979, such as the ERA, NVAP and NCEP.

(2) Different input data for re-analyses:

The ERA and NCEP processed the satellite data in very different ways and used



different quality control procedures on the conventional observations. The NCEP2
used exactly the same data as NCEP but corrected some navigation errors. These er-
rors were especially serious in the Southern Hemisphere where there is little other
data to compensate. Over the continents the radiosonde data should be quite similar
to Ross and Elliott in all the reanalyses.

{3) Different Assimilation models and techniques for the re-analyses. Even if the
input data were identieal, there would be differences in the analyses due to the spe-
cific model used in the assimilation. This effect should be most evident in data sparse
region, where the model forecast may not be strongly modified by the data in the anal-
ysis step.

3. Model Integration Data:

The three GCM integrations all use a common atmospheric component, the
NCAR CCMa3. The first is an Atmospheric Model Intercomparizon Program (AMIF)
type simulation using the CCM3 with prescribed observed sea surface temperatures
(SST) for the period 1979 to 1993. The prescribed SST are the same as those used 1n
the NCEP reanalysis. The second is the NCAR Climate System model, experiment
b003 (http/fwww.cgd. uear eduw/esm/experiments/b003. html) which was a 300 year in-
tegration, hereafter referred to as CSM. This is a fully coupled climate model involv-
ing atmospheric and oceanic GCMs and land and ice models. The years 16 - 35 are
chosen for analysis, just to give a sampling of the climatology of the model. This is also
the period described by Meehl and Arblaster (1958).

The third is a 125 year integration of the CSM in which the CO; concentration
increases at 1% per year(http:/'www.cgd ucar.edu/csm/experiments/b006. html), here-
after referred to as CSMb6. This results in a global mean temperature increase of 2.25
K at the end of the integration. The last 20 years of this data set are used here, yield-
ing a maximum COy effect.

The model integrations each contribute to a different aspect of the climate mod-
eling question. The CCM3 AMIP integration used the observed 5STs for the period
from 1979 to 1993 as boundary conditions. To the extent that the ocean temperatures
control the climate, this integration should resemble the observations for the eoinci-
dent period. The CSM coupled simulation has no constraint to resemble the observa-
tional data, except in a climatological sense. The CSM ocean simulation has



decumented shortcomings in the tropical variability, Meehl and Arblaster (1999). The
increasing CO» CSM experiment increases the global mean surface temperature by a
substantial amount. As in the CSM run the ocean temperatures are not constrained
in any way. This run will provide some idea of the types of changes in water vapor
content produced by this global warming scenano.

4. Results

a. Total Precipitable Water January and June Means and Standard Deviations

Figure 1 depicis the mean January precipitable water values for the Rozs and
Elliott data and the differences of the Rozs and Elliott value from the specific data set
normalized by the radiosonde value and expressed as a percent. The blue indicates
negative values which indicates that the data set value is less than the radiosonde.
The red indicates positive values which indicates that the data set value is greater
than the radicsonde value.

The seasonal variation of the sonde data, Fig. 1a, presents an expected picture.
Small values are evident in the winter hemisphere and over the continents, while
higher values prevail in the summer hemisphere, the Tropics and over the oceans.
The dramatic unevenness in the spatial sampling of the radiosonde network is clear
in this figure. The NVAP differences, Fig. 1d, are generally the smallest of the ob-
served sets, except in regions where the satellite data makes a dominant contribution.

The pattern over the continents reveals a problem noted by Soden and Lazante
(1896). They found that geographical regions of over and under estimates of precipi-
table water could be correlated with the type of humidity sensor used in the region..
The slower responding sensors in the former Soviet Union (FS1), eastern Europe,
China and India tend to produce values of upper tropospheric humidity higher than
the TOVS estimates. This type of error is greater with colder temperatures, and thus
increases with height and latitude. January with its low vapor values should be the
worst case for the Northern Hemisphere with respect to sensor systematic errors.
Ross and Elliott peint out that by changing the type of sensor from a slow responding
to a fast response can result in apparent drying in the time series of measurements
after the changeover. They note that there were many stations that changed the type
of sensor through the 1580s. The differences in Fig. 1d, would appear to be a combi-
nation of the slow senser problem and the changeover effect. If China retained the



slow sensors it would have the systematic over estimate to the data corrected using
the TOVS retrievals. If the FSU changed over to the new sensors it would display an
underestimate to means generated using 1988 to 1994 NVAP data. Of course, these
/ 1nhomogene1t1es of sensors are overlain onto the natural variability that will be found
comparing 1973-95 means to those for 1988-94. Figure 1d points out the difficulties
in assessing moisture fields with any degree of confidence.

Both the ERA and NCEP tend to underestimate the precipitable water with re-
spect to the radiosondes. The magnitude of the ERA underestimate indicates that this
analyses is definitely drier, even beyond the rather generous uncertainties hinted at
in Fig. 1d. NCEP appears to be slightly dry but is closer to the NVAP fields than the
ERA.

The CCM3 and CSM integrations in general underestimate the values in a man-
" ner similar to the ERA. The CSM is especially dry. The pattern of biases for the large

part remain similar in the two integrations. As mJght be expected the CSMb6 exper-
iment has a somewhat wetter bias, this appears to be emphasmed in the Southern
Hemisphere.

Notice that there is a per31stent pattern across the NCEP, NVAP, CCM3 and
CSM data sets, Figures 1b, ¢, d, e, f. This is manifested by a dipole across the US, the
west being negative and the east positive, by positive values in Japan, but negative
west of Japan stretching into southern Europe and the Middle East. This might be
attributable to a difference in the climatology of the time periods. The radiosonde data
has six years from 1973 to 1978, before the switch to more frequent, intense ENSO
events after 1979. The sonde data will differ from the other sets in the intensity of an
ENSO perturbation. Yet the fact that the pattern is also manifest in the CSM, which
has no such relation to these events undercuts this theory. The persistent pattern
across all the data sets mcludmg the CSM indicates that the sondes’ bias as the in-
struments changed through the time period have imprinted an artifact on the pat-
tern. The ERA is too dry while the CSMDb6 is too wet to depict the pattern W1th any

fidelity.

Figure 2 is the same as Fig. 1 except it depicts the July mean values The geo-
graphic bias seen in Fig. 1d is not as apparent in Fig. 2d, which could be anticipated
since the instrument errors are most evident at low values of moisture. The higher
values of July precipitable water in the Northern Hemisphere will tend to minimize
the inhomogenietires in the instruments. The NVAP differences are in general re-



duced in Fig. 2d, with some larger errors found in the winter hemisphere over Aus-
tralia and South Africa.. The two reanalysis’ both appear to have a distinct dry bias
despite some limited regions of opposite sign.

The model simulations all evince a general Northern Hemisphere dryness, even
in the CO, experiment, Fig. 2g. The b006 run is wetter than the CSM simulation, so

that it is more in line with the CCM3 result.

The only consistent pattern across all the data sets is dryness over the Northern
Continents. The artifact seen in J anuary data is not evident, the higher July values
in the Northern Hemisphere may not allow the dry bias to be clearly shown.

In Figures 1 and 2 the stations in northern South America and Central America
show a consistent dryness with respect to all the other data sets. This might be attrib-
uted to ENSO which gained in strength and frequency after 1979 and biased means
using data taken outside this time period. However, the dryness is even evident from
the CSM, which has no increase in ENSO events and seriously underpredicts the
strength of the events it produces. This indicates some systematic problem with these
stations. :

Figure 3. The same as Fig. 1, except for the standard deviation of the January
precipitable water. In this figure the NVAP are substantially different from Ross and
Elliott. Over land this must be at least in part, attributed to the difference in time pe-
riod and duration of the two data sets. From purely statistical ground one would an-
ticipate that the NVAP would systematically underestimate the standard deviation if
the time series of precipitable water were stationary. From statistics it might be esti-

-mated that the NVAP values should be about a factor of three less than the Ross and
Elliott. The NVAP values in Fig. 3 are generally somewhat less than this value. It
should be noted that most of the overestimates occur where the satellite data might
have a significant contribution. This problem does cloud some of the conclusions that
can be drawn for the reanalyses data sets. The ERA appears to be a bit less variable
over the northern landmasses. ‘

The model simulations evince an overly active January. There is some geograph-
ical variation across the northern landmasses, but here it is less obvious whether this
is a observational problem or due to the model shortcomings in specific climate re-
gimes. The maritime continent region seems too active in all the simulations. There
are regions such as the USA, and eastern Asia where the CCM3 variability pattern is
enhanced progressively as one goes from the CSM to the CSMb006.



There are one or two station in India where the ratios, Figs. 3b to 3g, are very
large. This is due to the observed standard deviation being anomalously small at
these locations. This is likely to be an error in the data. . '

Figure 4 is the same as Fig. 3, except for July. The conclusions drawn from the
three observatlonal sets are similar to those made for the January data. Although the
A NVAP seems to have a greater number of overestimates. Both NCEP and ERA tend
to underestimate the variability exceptions are the monsoon regions of southeast
" Asian and the southwest US. The patterns of the NCEP and ERA are similar.

The CCM3 shows a serious overestimate of the variability in southeast Asia,
which extends to the west equatorial Pacific in the CSM. It would seem that it is a
fairly sure conclusion that this model is too active over South East Asia. The CSMb6
run exhibits a systematic amplification of the high variability regions of the CCMa3,
with the underestimate regions remaining about the same.

b. 500 - 300 hPa Layer Precipitable Water January and June Means and Standard

Deviations

Figure 5 displays the water vapor content for the 500 to 300 hPa layer. The mea-
surement of this quantity is fraught with uncertainty. The sonde based sensors per-
form poorly in the cold, dry upper regions of the atmosphere. The satellite retrievals
are rather inexact in slicing out a particular layer of moisture as opposed to an entire
" column estimate at which they are quite good. The SSM/I cannot provide information
for layers, so only the TOVS data are used in the satellite estimate of the layers. As
described by RE, the sonde measurement problems are confounded by substantial dif-
ferences in national reporting procedures at height. These procedures attempt to ad-
dress the measurement shortcomings in the colder regions, but add an additional
level of temporal inhomogeneity as the procedures are revised.

* The amount of vapor at these levels is substantially less than the columnar val-
ue. The scale in Fig. 5a is a factor of 16 less than Fig. la. The NVAP values are almost
all greater than the RE. The negative points are over the FSU and India, which prob-
ably indicate a sonde instrument problem. The fact that the rest of the stations are
positive, would appear to support a general increase in the NVAP time period, or a
underestimate for this level by the sondes with respect to the TOVS retrivals.The
NCEP actually agree more closely to RE than does the NVAP. The ERA stands out as



grossly drier than all of the observational sets of data.

The model runs are too wet in the Southern Hemisphere and Tropics, except for
SE Asia and too dry over Asia. There is a progression from the CCM3 to CSMb006 of
this layer becoming increasingly more moist but retaining a similar pattern.

Figure 6 is as in Fig. 5 except for July. The NVAP data agree fairly well with the
RE in the northern Hemisphere while it is substantially greater in the winter hemi-
sphere. This might to due to the TOVS measurements dominating in the Southern
Hemisphere and the TOVS values being somewhat greater than the sonde data in the
~ winter. The ERA again stands out as the driest.

The pattern of the model simulations stays similar, with the CSMb006 being the
wettest of the sequence. The CCM3 appears to have some anomalous values over the
Red Sea, Arabian Peninsula.

Figure 7 is as in Fig. 3 except for the 500 to 300 hPa layer. The variations are
similar to those of the columnar value, the largest values being in the Tropics and
Southern sub-Tropics. The NVAP differences appear to be less geographically orient-

“ed, but more related to the position of the mean jet and thus the tropopause. Perhaps,
variations in the tropopause in the winter hemisphere are different in the 88-94 peri-
od. The NCEP appears to have the most consistent agreement with the RE data. The
ERAis con51stently too dry. The models tend to have too much vanablhty in the Trop-
ics and monsoon regions compared to the sonde data..

Figure 8 is as in Fig. 4 except for the 500 to 300 hPa layer. As in the previous
figure, generally the same comments apply to this level as the columnar values in Fig.
4, :

¢.  Global Latitudinal Averages

In the following figures, the gridded data are averaged in latitude bands about
the globe so that all the sets can be easily compared for different regions. This pro-
vides a visually direct comparison on a single plot.

Shown in Fig. 9a are plots of the mean July (Northern summer) precipitable wa-
ter values averaged from 35N to 45N around the globe. All the data sets are shown,
the radiosondes are binned into 5 degree longitude bands before the latitudinal mean
is taken. It must be noted that in many regions the radiosonde data may only include



a few stations or one or none. If the stations are located at an extreme of the latitude
bounds, it can provide a misleading value compared to the means of the gridded fields
due to the large latitudinal gradients in moisture. Despite this strong caveat, it was
felt that the RE data provides some perspective.

The model runs, CSM, CCM3, CSMb6, tend to be consistently at the extremes of
the plot either maxima or minima at specific longitudes but not consistently at either
extreme. The agreement of models and observations appears to be about on a par with
the agreement between the various observational estimates. At about 70W, all the
models are too low with respect to the observations, while in the mid Pacific at 180E
the CSMb6 is highest and CCM3 and CSM are the lowest. Overall the observational
sets evince good agreement. An exception is over the very high terrain from 60-100E,
where NVAP and RE are somewhat higher.

Figure 9b is the same as 9a except averaged for January (Southern summer)
from 60S to 408, the region of the Southern Ocean. In this data void there is a sub-
stantial spread between the observational data sets. Each one appears to display a
characteristic bias which offsets it from the others with longitudinal variations show-
ing a good correlation. Apparently, in this data void region, the biases of the assimi-
lation models are laid bare. The RE data show a sparse distribution and most of these
are from Antarctica. The GCM integrations fall into a ordering similar to the northern
latitudes. The NVAP data which would be purely satellite estimates are consistently
the lowest values by a large margin. This was not true over the Northern oceans in
Fig. 9a. Careful examination, indicates that the ERA, NCEP and NVAP have a simi-
lar ordering over the oceans in 9a, but the difference in emphasized in 9b.

In the winters of both hemispheres, Fig. 9¢d, the values are somewhat reduced.
In the northern hemisphere the cold air over the continents leads to very low moisture
content. Over the Pacific the peak shifts to the eastern side of the ocean with the
NCEP reanalyses having a higher peak than the ERA and NVAP. The southern hemi-
sphere has less dramatic change in structure. The ERA is consistently the lowest,
switching places with the NVAP from the summer. The impact of the COp warming

is a great deal more pronounced in the Southern Hemisphere. The CSM and CSMb6
have a large and consistent offset in Figs. 9b and 9d.

Figurel0 a,bis the same as 9a,b except for the 500 to 300 hPa layer. In the north-
ern Hemisphere, the differences over the oceans are more pronounced, than for the



total column value. The sonde values seem to tie the observed data sets together over
the land. The NVAP shows less longitudinal variation than the other sets and varies
somewhat less between the Southern summer, Fig. 10b, and winter, Fig. 10d. This is
ot at all evident in the NVAP values for the Northern hemisphere, and might be due
to the higher latitudes selected in the Southern plots.

Figure 11 depicts the standard deviation of precipitable water av eraged around
the glabe from 10N to 108 for January and July. For these data the NCEP and NCEF2
show substantial differences, especially in January, One reason for modifying the as-
similation model in the NCEP2 reanalyses was to improve the tropical variability of
the analyses. To a large extent the data input in this latitude band was identical be-
tween NCEP and NCEP2, what is seen here is the impact of the assimilation model
in a data sparse region, The NCEP2 curve agrees more closely with the other obser-
vational data sets, although it is less than ERA in June and July and less than NVAFP
in July. Both CSM integrations markedly shift the peak of activity in both January
and July westward, this might be due to the tendency of the ocean model in these in-
tegrations to form a tongue of anomalously cool water along the Equator in the east-
ern Pacifie.

Figure 12 is the same as Fig. 11 except for the 500 to 300 hFa layer. The data
were not available to compute this quantity for the NCEP2. The models tend to show
the most longitudinal variation. There is poor agreement as to the location and mag-
nitude of the peaks although there is a tendency for maxima in the western Pacific.
The NVAP data are consistently less than all the others, The NCEF and ERA display
only modest agreement.

Annual Cycle

Shown in the upper figure of Fig. 13 is the difference between the July and Jan-
uary precipitable water averaged from 25N to 35N. This latitude band was chosen
since it encompassed regions which exhibited the largest amplitude of annual eycle in
the Northern Hemisphere. The agreement between the observed data set is fair, the
model integrations tend to underestimate the amplitude except from 0 to 120E.

The lower figure is the same as the first except for the latitude band 203 to 105.
The agreement between the observational sets is not as goed as in the Northern
Hemisphere, especially in the eastern Pacific. The models tend to underestimate the
amplitude of the cycle in Fig. 13a and this carries over to the Southern Hemisphere
for CCM3 and esmbé but not the CCM3. the models all underestimate the annual cy-
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cle over North America, 240E to 300E.

Figure 14 is the same as Figure 13 except for the 500 to 300 hPa layer. The
Northern Hemisphere (top graph) show good agreement of all the data sets, with only
the CCM3 showing eccentric behavior. In the southern hemisphere (bottom figure),
the model tend to be the extreme, being too large over the oceans and too small over
the land. The ERA tends to have greater amplitude over most of the curve.

d. EOF Analysis of Zonal Mean Interannual Variations

Figure 15 presents leading mode of a EOF of the covariance matrix of the zonally
averaged precipitable water weighted by the cosine of latitude for each of the global
data sets. The fraction variance accounted for by this mode is indicated in Table 1.
Notice the large variation in the ohserved data sets with respect to the structure
about the Equator. The differences are pronounced in the southern hemisphere. The
variance explained by the leading mode also varies substantially. An analysis of the
time =eries indicates that the variations are linked closely to the Nino 3/4 55T, The
large differences in the variance explained indicates a wide variation in the impact of
the SSTs on the vapor distribution on the data sets.

The lower figure is the same as the upper except for the 500 to 300 hPa layer wa-
ter vapor, The NCEP2 is not used in this figure, since only the columnar values were
available. As above there is a substantial variation in the structure of the observa-
tional data sets. The model runs show a very different structure from any of the ob-
servations about the Equator. Further analysis shows that this is due to differences
in the locations of the ITCZ and its concomitant convection. For this highly averaged
field the differences in the structure of the interannual variations is very large, indi-
cating very different modes of variation for the water vapor distribution in this key
area,

5. Dbiscussion and Conclusions

The story told by consideration of the data presented here is one of caution in try-
ing to evaluate the distribution of water vapor over the globe. The prospects for a re-
liable, global data set spanning the last two to three decades are not promising. A
positive results is that the various observationally based data sets appear to be in fair
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agreement over the (comparatively) data rich northern hemisphere, this is true even
over the Pacific Ocean. The data poor regions of the southern Hemisphere show seri-
ous biases for each analysis technique. Thus, it appears that the assimilation system
can fill in the data void regions to a fair extent if provided with timely updates on the
periphery of the voids. The fact that the analyses vary substantially in regions where
the observations are sparse in space and time indicates the gap in providing a global
vapor distribution. Comparing the NCEP and NCEP2 reanalyses standard deviation
of precipitable water along the Equator, Fig. 11, it is shown how dramatically the
variability can be a function of the assimilation model in such analyses. The data go-
ing into the two analyses in identical for this region, the difference seen in the figures
is the result of a conscious effort to enhance the variability of the model used in the
assimilation.

The distinct patterns of anomalies Wlth respect to the sonde data seen in Figs. 1,
2 and following indicates the probable inhomogenieties in the sonde observations.
These artifacts are the result of instrument biases, changes in instrumentation,
changes in reporting procedures and processing procedures. As indicated in RE it is
not clear that the documentation exists to be able to compensate for all these contrib-
uting factors.

A summary of conclusions are:

1. There are substantial differences in the mean and standard deviation between
observationally based data sets.

2. There are geographical patterns when the data sets are compared to sondes,
which indicate regional inhomogenieties in the data records of water vapor.

3. These differences become more severe with height.

4. There are distinct biases in the reanalyses vapor products in data void regions,
such as the Southern Ocean.

5. The model mtegratlons considered here are generally outliers with respect to
the observed global data sets.

6. Characteristic atmospheric GCM biases are common to the prescribed SST
and coupled model integrations. This model appears to be much too variable in the
Tropics. '

7. The 1% per year Co2 increase mtegratlon displays the same patterns of errors
as the uncoupled and coupled simulations with the vapor amount amplified. No new

unique modes were obvious.
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. 8. An EOF analysis of the zonally averaged interannual anomalies indicate that

- there are very pronounced differences in the basic structure of the interannual vari-

~ation about the equator. This becomes more prominent at the 500-300 hPa layer. The
models have a nea’rly'maiqﬁe structure apart from that of the observations.

Acknowledgements This work was performed under the auspices of the Department
of Energy Environmental Sciences Division by the Lawrence Livermore National
'Laboratory under contract W-7405-ENG-48. NCEP Reanalysis precipitable water
data was obtained from The Climate Diagnostics Center. The radiosonde data was
_obtained from the Air Resources Laboratory fip site - ftp://gus.arlhg.noaa. gov/pub/

~ climate/W. _climatology/. The NVAP data was obtained from the NASA Water Vapor
" Project Global Energy and Water Cycle Experiment CD. The CCM3 and CSM data

~ was obtained from the NCAR CSM web site - http://www.cgd.ucar.edu/csm/.

-14-



6. References

Boville, B. A, and P. R. Gent, 1998: The NCAR Climate System Model, Version One.,
J.Climate, 11, 1115-1130.

Boville, B. A, and J. W. Hurrel, 1998: A comparison of the atmospheric circulations
simulated by the CCM3 and CSM1., J. Climate, 11, 1327-1341.

Gibson, J. K, P. Kallberg, S. Uppla, A- Hernandez, A. Nomura, and E. Serrano, 1997:
ECMWF Re-Analysis Project Report Series. 1. ERA Description. 66p.

Intergovernmental Panel on Climate Change, 1995: Climate Change 1995: The Sec-
ond IPCC Assessment. Cambridge University Press, 57 2pp

Kalnay, E. M., M. Kanimitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell,
S. Saha, G. White, J. Woolen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J.
Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetma, R. Reynolds, R. Jenne
and D. Joseph 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer.
Met. Soc., 77, 437-471.

Kanamitsu, M., W. Ebisuzaki, J. Woolen, J. Potter, M. Fiorino, 1999: An Overview of
Reanalysis - 2. Second Internationals Conference on Re-Analyses. 23-27 August,
1999. Reading, U.K. ( also available at http://wesley.wwb.noaa. gov/ranalysis2/).

Kiehl, J. T., J.J. Hack, G. B. Bonan, B.A. Boville, D. L. Williamson, and P. J. Rasch,
1998: The National Center for Atmospheric Research Community Climate Mod-
el: CCM3., J. Climate, 11, 1131- 1149.

Meehl, G. A. and J. M. Arblaster, 1998: The Asian-Australian Monsoon and El Nino
Southern Oscillation in the NCAR Climate System Model. J Clim, 11, 1356-
1385.

Weatherly, J. W., B. P. Briegleb, W. G. Large, andJ A. Maslanik, 1998: Sea ice and
polar climate in the NCAR CSM., J. Climate, 11, 1472-1486.

Ross, R. J. and W. P. Elliott, 1996: Tropospheric Precipitable Water: A Rad;losonde-
Based Climatology. NOAA Technical Memorandum ERL ARIL-210. U.S. Dept.
of Commerce.

'Randel, D. L., T. H. VonderHaar, M. A. Ringerrud, G. L. Stephens, T. J. Greenwald,
C.L. Coombs 1996: A new global water vapor data set. Bull. Amer. Meteor. Soc.,

77,1233-124

Trenberth, K. E 1990: Recent observed mteme"adal climate changes in the North-

ern Hemisphere, Bull. Amer. Meteor. Soc, 71, 988-293.



Trenberth, K. E. and J. Hurrel, 1994: Decadal atmosphere-ocean variations in the Pa-
cific., Clim. Dyn, 9, 303-319.

Trenberth, K E., 1995: Atmospheric circulation changes. Clim. Change 31, 427-453.

Wang, B 1995: Interdecadal changes in El Nmo onset in the last four decades .

Clim. 8,267-285
Zhang, Y., J. M. Wallace and D. S. Batnsh 1997: ENSO-like mterdecadal variabili-

ty:1900-93, J. Clim, 10, 1004-1020.

-15a-



Table 1: Percent variance explained by leading EOF of zonally averaged precipitable water
and precipitable water for the 300 to 500 hPa layer.

NVAP | ERA | NCEP | NCEP2 | CCM3 | CSM | CSMb6

Columnar Precipi- | 28 66 43 37 46 33 30
table water )

Precipitable water | 71 70 67 N/A 72 52 50
300 to 500 hPa - '
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