
UCRL-ID-123716

PCMDI
Program for Climate Model Diagnosis and Intercomparison

PCMDI Report No. 34

EzGet:
A Library of Fortran Subroutines to Facilitate Data Retrieval

by

Karl E. Taylor

April 1996 (original version)
August 1997 (revised)

PROGRAM FOR CLIMATE MODEL DIAGNOSIS AND INTERCOMPARISON
UNIVERSITY OF CALIFORNIA, LAWRENCE LIVERMORE NATIONAL LABORATORY

LIVERMORE, CA 94550

Contents

Abstract v

1 Introduction 1

2 Tutorial Examples 2

2.1 Simple retrieval of data . 2

2.2 Masking geographical regions when retrieving data 10

2.3 Mapping data to a speci�ed grid . 13

2.4 Computing an area average . 17

2.5 A typical amip application . 19

2.6 Placing data in contiguous memory . 25

2.7 Reducing memory requirements . 28

2.8 Another example of area-averaging . 32

3 EzGet Subroutines 36

3.1 Subroutine closeget . 37

3.2 Subroutine clrtable . 38

3.3 Subroutine defdim . 38

3.4 Subroutine defdimi . 46

3.5 Subroutine defgeog . 46

3.6 Subroutine defmisc . 49

3.7 Subroutine defregrd . 52

3.8 Subroutine defvar . 56

3.9 Subroutine defvarex . 57

3.10 Subroutine domain . 58

3.11 Subroutine domlimit . 58

iii

3.12 Subroutine getcoord . 59

3.13 Subroutine getdata . 59

3.14 Subroutine getdimwt . 61

3.15 Subroutine getedges . 61

3.16 Subroutine get�eld . 62

3.17 Subroutine getgeog . 62

3.18 Subroutine getnogap . 63

3.19 Subroutine initget . 64

3.20 Subroutine lendims . 64

3.21 Subroutine shape . 65

3.22 Subroutine varinfo . 65

4 Avoiding Errors 66

4.1 Input/output devices . 66

4.2 Subroutine and common names . 66

4.3 EzGet size limits . 67

5 Obtaining and Installing EzGet Software 68

Appendix A Model Acronyms and Associated Weights 69

Appendix B Geographical Regions 72

iv

ABSTRACT

The software described in this document is designed to facilitate retrieval of mod-
eled and observed climate data stored in popular formats including DRS, netCDF,
GrADS, and, if a control �le is supplied, GRIB. You can specify how the data should
be structured and whether it should undergo a grid transformation before you receive
it, even when you know little about the structure of the stored data (i.e., its dimension
order, grid, and domain).

The software is referred to here as EzGet (pronounced \easy-get") and it comprises
a set of subroutines that can be linked to any FORTRAN program. EzGet reads �les
through the cdunif interface which is available from the Program for Climate Model
Diagnosis and Intercomparison (PCMDI), but use of EzGet does not require familiarity
with cdunif. The main advantages of using this software instead of the lower level cdunif
library include:

� Substantial error trapping capabilities and detailed error messages

� Versatile capability of conveniently selecting data from speci�ed regions (e.g.,
oceans, North America, all land areas north of 45 degrees latitude, etc.)

� Ability to map data to a new grid at the time it is retrieved by EzGet

� Automatic creation of \weights" for use in subsequent averaging or masking of
data

� Increased control in specifying the domain, grid and structure of the retrieved
data.

Taken together these capabilities will simplify the process of writing programs for ac-
cessing data stored in di�erent formats and structures, including all the observed data
sets and the model output from various model intercomparison projects (AMIP, PMIP,
CMIP, etc.) archived at PCMDI.

EzGet software and the latest version of this document are available through the
PCMDI web site:

home page: http://www-pcmdi.llnl.gov/
EzGet location: http://www-pcmdi.llnl.gov/ktaylor/ezget/ezget.html

v

vi

1

1 Introduction

It is usually not too di�cult to write a FORTRAN program that performs the same
series of calculations on several di�erent sets of data, as long as all the data are stored
on the same grid and in the same structure and format. If, however, data are found in
di�erent formats and structures, then the program can become quite complex, or will
have to be revised to treat each new set of data. The software described here makes it
easier to write programs that can accept data sets stored in a variety of structures. It
can retrieve data that have been stored in the following cdunif-accessible formats: DRS,
netCDF, GrADS, and GRIB (if a control �le is supplied). It is designed to be especially
useful in analyzing output from climate models. These models may have di�erent grids,
the data may be stored in di�erent orders (e.g., south to north vs. north to south), and
the dimensions may have slightly di�erent names (e.g., \longitude" vs. \Longitude").

A powerful feature of this software is that it can both retrieve data from precisely
speci�ed domains and also map data to a common grid (speci�ed by the user or taken
from another �le) so that point-wise intercomparisons between model results and be-
tween modeled and observed �elds can be carried out without di�culty. Furthermore,
you can automatically obtain the \weight" (which commonly is the grid-cell area) as-
sociated with each grid cell. The set of weights associated with an array of data make
it easy to compute mean values (or other area-weighted statistics) and avoid the use of
\if" tests in cases when data might be \missing" from some grid cells. Finally, for the
models included in the Atmospheric Model Intercomparison Project (AMIP) and Pale-
oclimate Modeling Intercomparison Project (PMIP), special gridded maps are available
from PCMDI (Program for Climate Model Diagnosis and Intercomparison) that allow
one to retrieve data from individual geographical regions (e.g., North America, Indian
Ocean, etc.). All the data archived at PCMDI, including the AMIP and PMIP model
standard output, is accessible through this software. EzGet is limited to retrieving
(multi-dimensional) rectangular arrays of data, but there is complete control over the
limits of the domain, and with EzGet's masking capabilities, non-rectangular subsets
of the domain can be selected.

EzGet serves a di�erent purpose from other software tools developed at PCMDI.
It is meant to be used in conjunction with FORTRAN programs that need access to
data. For direct viewing and interactive manipulation of data, a Visualization and
Computation System (VCS) has been developed. To transfer data to �les, formats, or
visualization systems, the Data and Dimensions Interface (DDI) has been developed.
Neither of these can be called from a FORTRAN program.

As with any new software, some e�ort will be required to become familiar with
EzGet's capabilities and to learn how to apply it. In the next section several tutorial
examples are given that begin this process.

2 Tutorial Examples

2 Tutorial Examples

With the help of EzGet, data can be retrieved from �les (in formats readable by
cdunif) through a set of subroutine calls that are described in this document. Pa-
rameters that control such capabilities as specifying precise domains, mapping data to
speci�ed grids, and masking various regions are set through subroutine calls. Typical
applications of this software are illustrated by the following examples. The �rst ex-
ample should be studied with some thoroughness, because it provides the basis for the
subsequent examples.

2.1 Simple retrieval of data

Suppose we want to retrieve the surface air temperature data contained in a single
�le. The following short program accomplishes this:1

program extract

c This program

c ** retrieves the first 12 months of global data for a variable

c (named 'tas' in this example) that is stored in a file (named

c '/scratch/staff/lisa/amip_obs/nasa-amip_t').

c ** creates an array of "weights" with elements proportional to

c grid cell area (except for grid cells with missing data

c where the "weight" is set to 0.0).

c ** obtains the longitude and latitude coordinates and the

c length of each dimension retrieved.

c ** prints out a portion of the retrieved data.

parameter (nlon=100, nlat=50, nmon=12, n4=0)

real adata(nlon,nlat,nmon), wtsmask(nlon,nlat,nmon),

& alon(nlon), alat(nlat)

integer lons, lats, mons, i4

c ---

c Initialize EzGet:

1Further information about each of the EzGet subroutines can be found later in this section where
a more completely annotated version of program extract appears.

2.1 Simple retrieval of data 3

call initget

c ---

c Define "missing" data value.

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as 'tas' and indicate path/filename where

c it is stored. In subsequent calls to EzGet (e.g., defdim

c getdata, and getcoord), this field will be referred to by

c the index assigned here (i.e., 1).

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Define domain for variable 1 and define order that EzGet will

c retrieve data.

call defdim(1, 1, 'longitude', 'width', 'nearest',

& -180.0, 180.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range',

& 90.0, -90.0, 0.0)

call defdim(1, 3, 'time', 'unit', 'nearest', 1.0, 12.0, 0.0)

c ---

c Extract variable 1 from file and create missing data mask.

c Also return actual dimensions of retrieved data.

lons = 0

lats = 0

mons = 12

i4 = 0

call getdata(1, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmask, adata)

c ---

c Retrieve longitude and latitude coordinates of variable 1 (in

c the same order as the retrieved data).

call getcoord(1, 1, alon)

call getcoord(1, 2, alat)

c ---

c Close all files opened by EzGet.

4 Tutorial Examples

call closeget

c ---

c Write data retrieved (last month only):

write(*,'("longitudes = " / (10f8.3))') (alon(i), i=1,lons)

write(*,'(/ "month = ", i3)') mons

do 100 j=1,lats

write(*,'(/"latitude = ", f8.3)') alat(j)

write(*,'(10f8.3)') (adata(i,j,mons), i=1,lons)

100 continue

end

A fully annotated copy of this program appears below and each of the seven subrou-
tines called by it is documented in Section 3, but here we brie
y describe the purpose
of each of these subroutines:

initget This subroutine must be called to initialize EzGet. It assigns default
values to a few parameters and sets up some internal tables.

defmisc This subroutine (`de�ne miscellaneous') can be used to override cer-
tain default parameters assumed by EzGet. (Note in the program above the
parameter for missing data would be set to 1.0e20, but it happens that this is the
default, so this call to defmisc is not really necessary.)

defvar This subroutine de�nes a variable that will be referenced subsequently
by a simple integer index.

defdim This subroutine speci�es the dimension ordering along with the desired
domain for the data that will be retrieved. It also provides information for creating
an array of \weights," typically set proportional to the grid-cell areas, but set to
0.0 in regions of missing data.

getdata This subroutine retrieves data and creates an appropriate mask (or
set of \weights") associated with the data.

getcoord This subroutine retrieves the coordinates associated with a retrieved
�eld.

closeget This subroutine closes any �les opened by EzGet.

Here is the fully annotated version of the above program:

2.1 Simple retrieval of data 5

program extract

c This program

c ** retrieves the first 12 months of global data for a variable

c (named 'tas' in this example) that is stored in a file (named

c '/scratch/staff/lisa/amip_obs/nasa-amip_t').

c ** creates an array of "weights" with elements proportional to

c grid cell area (except for grid cells with missing data

c where the "weight" is set to 0.0).

c ** obtains the longitude and latitude coordinates and the

c length of each dimension retrieved.

c ** prints out a portion of the retrieved data.

c

c Concerning the structure of the stored data, we assume the

c following:

c

c 1. The field is a function of longitude, latitude, and time, but

c the dimension order is unknown.

c 2. The data are stored in a rectangular array.

c 3. The size of the array retrieved is limited as follows:

c a. The longitude dimension is no longer than 100 elements.

c b. The latitude dimension is no longer than 50 elements.

c c. The time dimension is no longer than 12 elements.

c 4. The names of the dimensions (as stored in the file) are:

c 'latitude', 'longitude', and 'time' (but not necessarily in

c that order).

c 5. The longitude coordinates are evenly spaced.

c 6. The latitude coordinates are evenly spaced.

c 7. The units for longitude and latitude are degrees.

c 8. Only one field in the file has the name, 'tas' (i.e., this

c variable name is unique in the file).

c 9. The number, 1.0e20, is stored in the place of the true data

c anywhere that data are missing (i.e., this is the "missing

c data" value or indicator).

c

c

c This program obtains the following information:

c

c lons = the actual length of the longitude dimension of the data

c retrieved from storage.

c lats = the actual length of the latitude dimension of the data

c retrieved from storage.

c mons = the actual number of months of data retrieved from storage.

c alon(100) = a vector containing the longitude coordinates for the

6 Tutorial Examples

c data.

c alat(50) = a vector containing the latitude coordinates for the

c data.

c adata(100,50,12) = the retrieved array of data, which according to

c our specifications given below, will be put in the following

c structure (regardless of how it was originally stored):

c 1. The dimension order will be: longitude, latitude, time

c (i.e., in the array, "adata", the first index is associated

c with longitude, the second with latitude, and the third with

c time).

c 2. The longitudes will be ordered from west to east, starting

c with the longitude nearest to 180 W.

c 3. The latitudes will be ordered north to south.

c 4. The months will be ordered consecutively.

c wtsmask(100,50,12) = the created "missing data" mask which will

c be ordered the same as "adata", with elements set proportional

c to the grid cell area (except for grid cells with missing data.

c where the elements will be set to 0.0)

c

c Note that if lons < nlon and/or lats < nlat, and/or mons < nmon,

c then the extra elements of the array, "adata" and "wtsmask" will be

c assigned a value of 0.0 by EzGet.

parameter (nlon=100, nlat=50, nmon=12, n4=0)

real adata(nlon,nlat,nmon), wtsmask(nlon,nlat,nmon),

& alon(nlon), alat(nlat)

integer lons, lats, mons, i4

c ---

c Initialize EzGet:

call initget

c ---

c Tell EzGet to consider "missing" any data that have

c values (within a small tolerance) of 1.0e20.

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as 'tas' and indicate path/filename where

c it is stored. In subsequent calls to EzGet (e.g., defdim

c getdata, and getcoord), this field will be referenced by

c the index assigned here (i.e., 1).

2.1 Simple retrieval of data 7

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Define domain for variable 1 and define order that EzGet will

c retrieve data.

call defdim(1, 1, 'longitude', 'width', 'nearest',

& -180.0, 180.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range',

& 90.0, -90.0, 0.0)

call defdim(1, 3, 'time', 'unit', 'nearest', 1.0, 12.0, 0.0)

c where in the first call to defdim above the arguments indicate

c the following:

c

c 1, 1, 'longitude':

c The first 3 arguments indicate that for variable 1 (as

c indicated by 1st argument), the data should be retrieved such

c that the dimension named 'longitude' (as indicated by the

c 3rd argument) is the first dimension (as indicated by the 2nd

c argument).

c 'width': this argument controls the creation of the array of

c "weights" that will be associated with the data. For each

c array element the weight is equal to the product of the

c weights defined by each dimension and here 'width' specifies

c that the "weights" should be proportional to the

c longitudinal width of each grid cell.

c 'nearest', -180.0, 180.0, 360.0:

c these 4 arguments define the domain that will be retrieved

c (and also the order of retrieval). In this case all data

c with a longitude coordinate roughly in the range -180 to 180

c will be extracted, starting near -180. The value 360.0

c indicates that this coordinate is cyclical with a period of

c 360, so that EzGet will recognize equivalences such as

c 0. = 360. = -360. and -90. = 270. Note that with 'nearest'

c specified and with the range covering a complete cycle,

c EzGet may shift the domain slightly so as to prevent a grid

c cell near -180.0 (=180.0) from being split across the

c boundary. If, for example, the center of grid cells

c are located at -180, -170, -160, ... 170, then EzGet will

c shift the requested domain to -185 to 175 so the grid cell

c at -180 will not be split.

c

c and in the second call to defdim above the arguments indicate the

8 Tutorial Examples

c following:

c 'cosine': this option for controlling creation of weights

c specifies that weights be generated equal approximately

c to the cosine of latitude (i.e., abs(sin(bdry1) -

c sin(bdry2)), where bdry1 and bdry2 are edges of the latitude

c grid-cell, assumed to be half-way between grid-cell centers)

c be assigned to all elements (except the weight will be 0.0

c for grid cells with missing data). Another option

c ('gaussian') would be appropriate for spectral models with

c gaussian grids (as opposed to the evenly spaced grid

c accessed here).

c 'range', 90.0, -90.0, 0.0:

c these 4 arguments define the domain that will be retrieved

c (and also the order of retrieval). In this case all data

c with latitude coordinates in the range 90 to -90 will

c be retrieved, starting near 90 (i.e. data will be retrieved

c from north to south). The value 0.0 indicates that this

c coordinate is not cyclical.

c

c and in the third call to defdim above the fourth argument

c indicates the following:

c 'unit': this option for controlling creation of weights specifies

c that unit weight should be given to each element of this

c dimension (except the weight will be 0. for grid cells with

c missing data).

c

c ---

c Extract variable 1 from file and create missing data mask.

c The lengths of the longitude, latitude and time dimensions of

c the data stored in the file are unknown, so initialize the

c "expected" dimension lengths to 0. Return the actual dimensions

c of the retrieved data.

lons = 0

lats = 0

mons = 12

i4 = 0

call getdata(1, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmask, adata)

c where on calling getdata the arguments have been defined as

c follows:

c

c 1: The first argument has the value 1 and indicates that data

c will be extracted for variable 1 (defined in defvar above).

2.1 Simple retrieval of data 9

c nlon, nlat, nmon, n4:

c These are the declared dimensions of the arrays, wtsmask and

c adata. Note that n4=0 because these arrays have only 3

c dimensions.

c lons, lats, mons, i4:

c In this example, the user does not know how large the actual

c longitude and latitude dimensions of the data being retrieved

c will be, so these are set to 0. The time dimension is

c expected to be 12 (months) as specified in the earlier call to

c defdim. In general, if the user knows the size of the domain

c to be retrieved, it is usually prudent to set these arguments

c to the expected size of the domain, because then EzGet can

c error exit if the actual size differs from what is expected.

c

c On return from getdata:

c

c 1, nlon, nlat, nmon, n4:

c The first 5 arguments will be unchanged.

c lons, lats, mons, i4:

c returns the actual dimensions of the data retrieved.

c wtsmask: returns the weights associated with the data.

c In this example, the weights will either be 0.0 or

c proportional to grid cell area, depending on whether or not

c the data are missing.

c adata: returns the extracted data.

c ---

c Retrieve longitude and latitude coordinates of variable 1 (in

c the same order as the retrieved data).

call getcoord(1, 1, alon)

call getcoord(1, 2, alat)

c where in the first call to getcoord above, the arguments indicate

c the following:

c

c 1: The 1st argument has the value 1 and indicates that we want

c to obtain the coordinates of data extracted for variable 1

c (as defined in the earlier call to defvar).

c 1: The 2nd argument has the value 1 and indicates that we want

c to obtain the coordinates for the 1st dimension (as defined

c in the earlier call to defdim).

c alon: returns the coordinate values for the 1st dimension of

c of variable 1 (i.e., 'longitude', as defined by defdim).

10 Tutorial Examples

c ---

c Close all files opened by EzGet.

call closeget

c ---

c Write data retrieved for last month. Note that any missing data

c will have been assigned the value 1.e20, so when written with

c f8.3 format will appear as '********':

write(*,'("longitudes = " / (10f8.3))') (alon(i), i=1,lons)

write(*,'(/ "month = ", i3)') mons

do 100 j=1,lats

write(*,'(/"latitude = ", f8.3)') alat(j)

write(*,'(10f8.3)') (adata(i,j,mons), i=1,lons)

100 continue

end

2.2 Masking geographical regions when retrieving data

In order to mask out data that lie outside some geographical region of interest, a
�le must be created containing data that uniquely identify each grid cell as belonging
to a particular geographical region (such as 'land' or 'ocean' for land/sea type masks
(which for AMIP 1 data are named 'sft', for AMIP 2 data, 'sftl', and for PMIP data,
'sftland'), or such as 'North America', 'Indian Ocean', 'South Atlantic', etc. for region
type masks (which for AMIP and PMIP data are named 'sftbyrgn'). Geography data
�les compatible with EzGet are available for most model grids from PCMDI. Besides
the EzGet subroutines discussed in example 1, the following subroutine will also be
called:

defgeog This subroutine makes it possible for you to specify that certain geo-
graphical regions should be masked out.

Suppose we want to obtain data from North America for the region north of the
Tropic of Cancer. The following program accomplishes this task.

program getregn

2.2 Selecting data from geographical regions 11

c This program

c ** retrieves surface temperature data for the region of

c North America north of 23.5 N latitude. (Note: data are

c extracted only for grid cells whose coordinates are not outside

c the range 23.5 N to 90.0 N and 190 W to 40 W.)

c ** creates an array of "weights", with elements set proportional

c to the area of the grid cells falling within the selected

c geographical region (except for those grid cells that contain

c "missing" data or which lie outside North America, in which case

c the weight is set to 0.0).

c ** obtains the longitude and latitude coordinates and

c the length of each dimension retrieved.

c This program is in many ways similar to example 1, and

c further explanation can be found in the comments appearing in

c that example (program extract).

c Note that the region is selected in two ways.

c First, all data for grid cells in the region 23.5 N to 90.0 N and

c 190 W and 40 W are extracted, and then all grid-cells that are

c outside the North American boundaries are masked out. The size of

c the arrays, adata and wtsmask, only need to be large enough to

c accommodate the region extracted (before the geography mask is

c applied).

parameter (nlon=35, nlat=25, nmon=15, n4=0)

real adata(nlon,nlat,nmon), wtsmask(nlon,nlat,nmon),

& alon(nlon), alat(nlat)

integer lons, lats, mons, i4

c ---

c Initialize EzGet and define "missing" data value:

call initget

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as 'tas' and define its domain and the order

c that EzGet will retrieve data.

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

call defdim(1, 1, 'longitude', 'width', 'range',

& -190.0, -40.0, 360.0)

12 Tutorial Examples

c >>> Note that the longitude range specified above is large enough

c >>> to accommodate all North American grid cells.

call defdim(1, 2, 'latitude', 'cosine', 'range', 23.5, 90.0, 0.0)

call defdim(1, 3, 'time', 'unit', 'nearest', 1.0, 12.0, 0.0)

c ---

c >>> Define variable 2 as 'sftbyrgn' and indicate path/filename

c >>> where it is stored. This variable should contain a "geography

c >>> mask" that is compatible with the EzGet convention for

c >>> identifying different geographical regions (see documentation

c >>> of subroutine defgeog), and it should be on the same grid as

c >>> variable 1 defined above. In subsequent calls to EzGet (e.g.,

c >>> defgeog) this field will be referred to by the index assigned

c >>> here (i.e., 2).

call defvar(2, 'sftbyrgn', '/amipsp/drs/sftbyrgn/sftbyrgn_gla')

c ---

c >>> Control geographical masking of retrieved data.

call defgeog(1, 'in', 2, 'North America')

c >>> where the arguments indicate the following:

c

c >>> 1: The first argument has the value 1 and indicates that

c >>> the geography mask will be applied to variable 1.

c >>> 'in': indicates that the masking should be done before any

c >>> regridding is performed. (See later examples for further

c >>> explanation.)

c >>> 2: Indicates that variable 2 contains the geography data.

c >>> 'North America': indicates that this is the region of

c >>> interest and any data outside this region should be

c >>> masked.

c ---

c Extract variable 1 from file and mask data outside region of

c interest.

lons = 0

lats = 0

mons = 12

i4 = 0

call getdata(1, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmask, adata)

2.3 Mapping data to a speci�ed grid 13

c ---

c Retrieve longitude and latitude coordinates of variable 1.

call getcoord(1, 1, alon)

call getcoord(1, 2, alat)

c ---

c Close all files opened by EzGet.

call closeget

c ---

c Write out weights and data retrieved (last month only):

write(*,'("longitudes = " / (10f8.3))') (alon(i), i=1,lons)

write(*,'(/ "month = ", i3)') mons

do 100 j=1,lats

write(*,'(/"latitude = ", f8.3)') alat(j)

write(*,'("weights:")')

write(*,'(9f9.6)') (wtsmask(i,j,mons), i=1,lons)

write(*,'("temperature:")')

write(*,'(9f9.3)') (adata(i,j,mons), i=1,lons)

100 continue

end

2.3 Mapping data to a speci�ed grid

Suppose that data have been stored on a longitude-latitude grid that is di�erent
from the grid you might require for a particular application (e.g., to compare to data
stored on a di�erent grid). EzGet will map the data to some grid that you specify.
Besides the EzGet subroutines discussed in example 1, the following subroutine will be
called:

defregrd This subroutine controls mapping of data to a speci�ed grid.

Suppose we want to retrieve data and regrid it to a 10� by 15� latitude-longitude
grid. The following program accomplishes this task.

14 Tutorial Examples

program regrding

c This program

c ** retrieves global surface temperature data and maps

c it to a 10 degree by 15 degree latitude-longitude "target"

c grid using an area-weighted averaging scheme.

c ** creates an array of "weights", with elements set

c proportional to the sum of the areas of the original (i.e.,

c source) grid cells that contribute to each target cell.

c ** obtains the longitude and latitude coordinates

c of the target grid and the length of each dimension of the

c target grid.

c This program is in many ways similar to example 1, and

c further explanation can be found in the comments appearing in

c that example (program extract).

c Note that in order to apply the area-weighting regridding algorithm,

c the user must specify what type of grid the original data were

c stored on (e.g., gaussian, evenly-spaced, etc.)

c The size of the arrays, adata and wtsmask, only need to be large

c enough to accommodate the region extracted (i.e. after regridding),

c so nlon .ge. 360/15 = 24 and nlat .ge. 180/10 = 18.

parameter (nlon=24, nlat=18, nmon=12, n4=0)

real adata(nlon,nlat,nmon), wtsmask(nlon,nlat,nmon),

& alon(nlon), alat(nlat)

integer lons, lats, mons, i4

c ---

c Initialize EzGet and define "missing" data value:

call initget

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as 'tas' and indicate path/filename where

c it is stored.

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Define domain for variable 1 and define order that EzGet will

c retrieve data. Also indicate what type of grid the source

2.3 Mapping data to a speci�ed grid 15

c data were stored on.

call defdim(1, 1, 'longitude', 'width', 'range', 0.0, 0.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range', 0.0, 0.0, 0.0)

call defdim(1, 3, 'time', 'unit', 'nearest', 1.0, 12.0, 0.0)

c

c When regridding data, the "cycle" for longitude should always

c be specified (set to 360.0 in the above example).

c The domain limits specified for longitude and latitude will be

c overridden by the arguments in the call to subroutine defregrd

c below.

c ---

c Define target grid to which data should be mapped.

call defregrd(1, 'uniform', 0, 'area-weighted', 18, 85.0, -10.0,

& 24, -172.5, 15.0)

c where the arguments in the subroutine call indicate the following:

c

c 1: The first argument has the value 1 and indicates that the

c the regridding will be applied to variable 1.

c 'uniform': indicates that the target grid will be rectangular

c grid of evenly-spaced latitude and longitude cells.

c 0: This argument is ignored because the 2nd argument was set

c to 'uniform'.

c 'area-weighted': indicates that an area-weighted mapping scheme

c should be used.

c 18, 85.0, -10.0:

c These 3 arguments define the latitude grid that will be

c created. In this case a grid with 18 latitude cells

c is created with the first grid cell centered at 85.0

c degrees north and proceeding southward in increments of

c 10 degrees.

c 24, -172.5, 15.0:

c These 3 arguments define the longitude grid, indicating

c that there will be 24 longitude grid cells, with the first

c grid cell centered at -172.5 degrees west and proceeding

c eastward in increments of 15 degrees.

c

c ---

c Extract variable 1 from file and map to target grid defined above.

lons = 24

lats = 18

16 Tutorial Examples

mons = 12

i4 = 0

call getdata(1, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmask, adata)

c Note: we have defined the expected longitude and latitude

c dimension to be 24 and 18, respectively (as specified by lons and

c lats) because we know the data will be regridded to the grid

c defined by the call to defregrd, which specifies a global 10 x 15

c degree latitude-longitude grid. It is always good practice to

c define the expected dimensions if they are known.

c ---

c Retrieve longitude and latitude coordinates of variable 1.

call getcoord(1, 1, alon)

call getcoord(1, 2, alat)

c Note: According to the parameters defining the target grid,

c alon should contain -172.5, -157.5, . . . 172.5 and

c alat should contain 85.0, 75.0. . . -85.0

c ---

c Close all files opened by EzGet.

call closeget

c ---

c Write data retrieved (last month only):

write(*,'("longitudes = " / (10f8.3))') (alon(i), i=1,lons)

write(*,'(/ "month = ", i3)') mons

do 100 j=1,lats

write(*,'(/"latitude = ", f8.3)') alat(j)

write(*,'(10f8.3)') (adata(i,j,mons), i=1,lons)

100 continue

end

2.4 Computing an area average 17

2.4 Computing an area average

There are several ways that EzGet can facilitate the computation of area averages.
Suppose we want to compute the average temperature over North America north of the
Tropic of Cancer for each month of data stored in a �le. Perhaps the simplest method
makes use of the area-weighting regridding algorithm and the masking capabilities of
EzGet as illustrated by the following program:

program areamean

c This program

c

c ** retrieves surface temperature data for the region of

c North America north of 23.5 N latitude. It then uses the

c regridding capability of EzGet to compute the area average of a

c single "grid-cell" covering the region of North America north of

c 23.5 N. Up to 120 months of data can be extracted at once and

c the area means are returned to this program as a vector, one

c element for each month of data extracted.

c

c ** creates a vector of "weights" (one for each month)

c proportional to the area of the region over which the means have

c been computed. The elements of this vector should be

c identical (except possibly if grid cells are missing data).

c This program is in many ways similar to examples 1, 2 and 3, and

c further explanation can be found in the comments appearing in

c those examples (programs extract, getregn, and regrding).

c >>> Note that nlon and nlat can be declared as small as 1, because

c >>> these dimensions reduce to a single grid cell after regridding.

parameter (nmon=120, nlon=1, nlat=1, n4=0)

real amean(nmon, nlon, nlat), wtsmask(nmon, nlon, nlat)

integer lons, lats, mons, i4

c ---

c Initialize EzGet and define "missing" data value:

call initget

call defmisc('input missing value', 'real', 1.0e20)

c ---

18 Tutorial Examples

c Define variable 1 as observed surface temperature data ('tas')

c and define its domain:

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

call defdim(1, 1, 'time', 'unit', 'as saved', 0.0, 0.0, 0.0)

call defdim(1, 2, 'longitude', 'width', 'range', 0.0, 0.0, 360.0)

call defdim(1, 3, 'latitude', 'cosine', 'range', 0.0, 0.0, 0.0)

c >>> Note that in the 1st call to defdim above, the last 4

c >>> arguments are:

c >>> 'as saved', 0.0, 0.0, 0.0:

c >>> 'as saved' specifies that all months should be retrieved in

c >>> the order that they were originally stored in the file.

c >>> (In this case the last 3 arguments [0.0, 0.0, 0.0] are

c >>> ignored.)

c ---

c Define variable 2 as the geography data needed and specify that

c it be used to select North American data only for variable 1:

call defvar(2, 'sftbyrgn', '/amipsp/drs/sftbyrgn/sftbyrgn_gla')

call defgeog(1, 'in', 2, 'North America')

c ---

c Define target grid to which data should be mapped.

call defregrd(1, 'uniform', 0, 'area-weighted',

& 1, 56.75, 66.5, 1, -125.0, 150.0)

c where the target grid has been specified as a single grid cell

c centered at 125 W longitude, 56.75 N latitude and has

c latitude-longitude dimensions of 66.5 x 150.

c ---

c Extract variable 1, which, because of regridding to a single cell,

c contains the area-weighted mean for each month.

mons = 0

lons = 1

lats = 1

i4 = 0

call getdata(1, nmon,nlon,nlat,n4, mons,lons,lats,i4,

& wtsmask, amean)

2.5 A typical amip application 19

c ---

c Close all files opened by EzGet.

call closeget

c ---

c Write data retrieved:

write(*,'("North American Mean (North of 23.5 N)" //

& " month area mean" /)')

write(*,'(i5, f12.7, f10.3)')

& (m, wtsmask(m,1,1), amean(m,1,1), m=1,mons)

end

2.5 A typical amip application

Model output from the Atmospheric Model Intercomparison Project (AMIP) has
been archived in a format readable by EzGet. It is often of interest to compare the
model simulated �elds by the AMIP models to observations. One measure of di�erence
between two �elds is the root-mean-square (RMS) di�erence. The following program
computes the area-weighted RMS di�erence between model-simulated and observed
�elds of annual mean surface air temperature over North America in the year 1988
(i.e., year 10 of the AMIP simulations). Before computing the RMS di�erence, the
model output is mapped to the same grid as the observations.

Note that it is not necessary for you to know either the resolution or the type of grid
used by each model (because EzGet retrieves the resolution and for AMIP and PMIP
models EzGet looks up the grid type in a table). The data extracted is mapped to
the observed grid and all arrays you de�ne are simply declared large enough to contain
data on the observed grid. (EzGet dynamically allocates space needed to accommodate
data on the original (i.e., source) grid.)

The following program will perform the RMS calculation:

program rmscalc

c This program loops through the AMIP models and computes the area-

c weighted RMS difference between the modeled and observed annual mean

c surface air temperature over North America (north of the Tropic of

20 Tutorial Examples

c Cancer) for the year 1988. Only grid cells with observed values for

c every month of this year are included in computing the RMS

c difference. Because some models may have unrealistic

c representations of the continental geography, some data from the

c model's North American grid may not map onto the observed North

c American grid. Any grid cells where either observations or model

c data are missing are excluded from the RMS difference computed

c here.

parameter (nlon=35, nlat=20, nmon=12, n4=0, nmods=28)

real adata(nlon, nlat, nmon), wtsmask(nlon, nlat, nmon),

& yrobs(nlon,nlat), yrmodel(nlon,nlat),

& wtobs(nlon,nlat), wtmodel(nlon,nlat)

double precision asum, rmsdiff, wtsum

integer lons, lats, mons, i4, i, j, m, n, mm

character*3 modlname(nmods)

data modlname / 'bmr', 'ccc', 'col', 'cnr', 'csi', 'csu', 'der',

& 'dnm', 'ecm', 'gfd', 'gis', 'gla', 'gsf', 'iap', 'jma', 'lmd',

& 'mgo', 'mpi', 'mri', 'nca', 'nmc', 'nrl', 'sng', 'sun', 'ucl',

& 'uiu', 'ukm', 'yon' /

c Note: the 'rpn' and 'uga' models were left out of the above list

c because the variable 'tas' is not available for these

c models.

c ---

c Initialize EzGet and define "missing" data value:

call initget

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as the observed surface air temperature and

c indicate path/filename where data are stored.

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Define domain for variable 1.

call defdim(1, 1, 'longitude', 'width', 'range',

& -190.0, -40.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range', 23.5, 90.0, 0.0)

call defdim(1, 3, 'time', 'unit', 'nearest', 109., 120., 0.0)

2.5 A typical amip application 21

c ---

c Define variable 2 as the geography data on the observational grid,

c and specify that North American data should be selected:

call defvar(2, 'sftbyrgn', '/amipsp/drs/sftbyrgn/sftbyrgn_gla')

call defgeog(1, 'in', 2, 'North America')

c ---

c Extract variable 1 (observed field).

lons = 0

lats = 0

mons = nmon

i4 = 0

call getdata(1, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmask, adata)

c ---

c Compute annual mean at each grid cell, but only if all 12 months

c of observed data are available.

do 300 j=1,nlat

do 200 i=1,nlon

asum = 0.0

wtsum = 0.0

mm = 0

do 100 m=1,12

if (wtsmask(i,j,m) .gt. 0.) then

mm = mm + 1

wtsum = wtsum + wtsmask(i,j,m)

asum = asum + adata(i,j,m)

endif

100 continue

if (mm .eq. 12) then

yrobs(i,j) = asum/12.

wtobs(i,j) = wtsum/12.

else

yrobs(i,j) = 0.0

wtobs(i,j) = 0.0

22 Tutorial Examples

endif

200 continue

300 continue

c ---

c Loop through AMIP models and compute RMS differences between

c modeled and observed fields.

do 1000 n=1,nmods

c ---

c Define variable 3 as the model simulated surface air temperature

c and specify the type of grid this model has:

call defvar(3, 'tas', '/amipsp/drs/tas/tas_'//modlname(n))

call defdim(3, 1, 'longitude', modlname(n), 'nearest',

& 0.0, 0.0, 360.0)

call defdim(3, 2, 'latitude', modlname(n), 'nearest',

& 0.0, 0.0, 0.0)

call defdim(3, 3, 'time', 'unit', 'nearest', 109., 120., 0.0)

c >>> Note that the domains specified above for latitude and

c >>> longitude are ignored by EzGet because the data for this

c >>> variable will be regridded to a target grid, which

c >>> determines the domain.

c >>> Note that the name of the model can be used to specify the

c >>> type of longitude and latitude weights that will be

c >>> generated by EzGet. EzGet contains a table that allows

c >>> it to generate the proper weights proportional to grid cell

c >>> area, if the model name is a standard AMIP or PMIP name.

c >>> Note that for AMIP data, months 109 through 120 are the

c >>> months of the calendar year 1988.

c ---

c Define variable 4 as the geography data on the model grid, and

c specify that North American data should be selected for

c variable 3.

call defvar(4, 'sftbyrgn',

& '/amipsp/drs/sftbyrgn/sftbyrgn_'//modlname(n))

call defgeog(3, 'in', 4, 'North America')

2.5 A typical amip application 23

c ---

c Instruct EzGet to map modeled field to observational grid upon

c retrieving data.

call defregrd(3, 'to', 1, 'area-weighted',

& 0, 0.0, 0.0, 0, 0.0, 0.0)

c ---

c Extract variable 3 and map to observed grid.

lons = 0

lats = 0

mons = nmon

i4 = 0

call getdata(3, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmask, adata)

c ---

c Compute annual mean at each grid cell, but only if all 12 months

c of data are available.

do 600 j=1,nlat

do 500 i=1,nlon

asum = 0.0

wtsum = 0.0

mm = 0

do 400 m=1,12

if (wtsmask(i,j,m) .gt. 0.) then

mm = mm + 1

wtsum = wtsum + wtsmask(i,j,m)

asum = asum + adata(i,j,m)

endif

400 continue

if (mm .eq. 12) then

yrmodel(i,j) = asum/12.

wtmodel(i,j) = wtsum/12.

else

yrmodel(i,j) = 0.0

wtmodel(i,j) = 0.0

24 Tutorial Examples

endif

500 continue

600 continue

c ---

c Compute area-weighted RMS difference between model and observed

c fields.

wtsum = 0.0

rmsdiff = 0.0

do 800 j=1,nlat

do 700 i=1,nlon

if (wtmodel(i,j) .gt. 0.0) then

wtsum = wtsum + wtobs(i,j)

rmsdiff = rmsdiff +

& wtobs(i,j)*((yrobs(i,j)-yrmodel(i,j))**2)

endif

700 continue

800 continue

c ---

c Write area-weighted RMS difference between model and observed

c fields.

if (wtsum .gt. 0.0) then

rmsdiff = dsqrt(rmsdiff/wtsum)

write(*,'(1x, a8, f12.7, f12.3)') modlname(n), wtsum, rmsdiff

else

write(*,'(1x, a8, " data missing")') modlname(n)

endif

1000 continue

c ---

c Close all files opened by EzGet.

call closeget

2.6 Placing data in contiguous memory 25

end

2.6 Placing data in contiguous memory

There are times when you might prefer that the data retrieved by EzGet be forced
to occupy contiguous memory. Suppose, for example, that after you read the data,
you plan to treat it as a vector string of elements (perhaps because you do not care
about the longitude-latitude structure of the data). Then instead of calling getdata,
it may be more convenient to call getnogap, which always places the data retrieved by
EzGet in contiguous memory. There is often a computational advantage to treating a
single, one-dimensional vector of data rather than a multidimensional array containing
the same data. Also it may be easier to reduce the internal memory required by EzGet
if the data set is thought of as a 1-dimensional vector of elements.

In the following example, the maximum and minimum values of a �eld of unknown
structure are found. By calling getnogap rather than getdata, we can make the
program more general (while using memory e�ciently). Besides the EzGet subroutines
discussed in example 1, the following subroutines will be called:

getnogap This subroutine retrieves data and creates an appropriate mask (or
set of \weights") associated with the data. It di�ers from getdata in that the
data are forced to occupy contiguous memory.

domain This subroutine retrieves from a �le the number of dimensions, the
names of the dimensions and the full domain of each dimension of a �eld (as
originally stored) for any variable.

lendims After retrieving data, this subroutine returns the actual length of each
dimension of the data that has been retrieved.

program maxmin

c This program

c ** obtains the structure of a variable (the number and length

c of each of its dimensions).

c ** finds the maximum and minimum value stored for the variable

c (but skips 'missing' data).

c ** prints out the information retrieved.

c

c This program will error exit if a data set's size exceeds maxsize

c (declared in the parameter statement below)

26 Tutorial Examples

parameter (maxsize=500000)

real adata(maxsize), wtsmask(maxsize)

real begdom(4), enddom(4), rmax, rmin

integer ldim(4), isize, ndim, n

character*16 dimnames(4)

c ---

c Initialize EzGet:

call initget

c ---

c Define "missing" data value.

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as 'tas' and indicate path/filename where

c it is stored. In subsequent calls to EzGet (e.g., defdim

c getdata, and getcoord), this field will be referred to by

c the index assigned here (i.e., 1).

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Obtain from the file the number of dimensions, the names of the

c dimensions and the full domain of each dimension of the variable

c (as originally stored).

call domain(1, ndim, dimnames, begdom, enddom)

c where

c 1: The first argument has the value 1 and indicates that the

c you want to retrieve dimension information for variable 1.

c ndim: This argument returns the number of dimensions there are

c for variable 1.

c dimnames: This vector argument returns the dimension names.

c begdom: This vector argument returns the first coordinate value

c stored for each dimension.

c enddom: This vector argument returns the last coordinate value

c stored for each dimension.

c ---

2.6 Placing data in contiguous memory 27

c Define domain for variable 1: retrieve all data stored

do 100 n=1,ndim

call defdim(1, n, dimnames(n), 'unit', 'as saved', 0., 0., 0.)

100 continue

c ---

c Extract variable 1 from file and create missing data mask.

call getnogap(1, maxsize, wtsmask, adata)

c where

c 1: The first argument has the value 1 and indicates that the

c you want to retrieve data from variable 1.

c wtsmask: returns the weights associated with the data.

c adata: returns the extracted data.

c ---

c Retrieve the length of each dimension of the variable and the

c total length of the vector of data retrieved:

call lendims(1, ldim(1), ldim(2), ldim(3), ldim(4), isize)

c where

c 1: The first argument has the value 1 and specifies that the

c the dimension lengths for variable 1 should be obtained.

c ldim(1), ldim(2), ldim(3), ldim(4): return the lengths of

c dimensions 1, 2, 3, and 4, respectively.

c isize: isize = ldim(1)*ldim(2)*ldim(3)*ldim(4), but if any

c dimension is length 0, a 1 is substituted in the above formula.

c ---

c Close all files opened by EzGet.

call closeget

c ---

c Find the maximum and minimum values retrieved (skipping "missing"

c values).

rmax = -1.e40

rmin = 1.e40

do 200 n=1,isize

if (wtsmask(n) .gt. 0.0) then

28 Tutorial Examples

rmax = amax1(rmax, adata(n))

rmin = amin1(rmin, adata(n))

endif

200 continue

c ---

c Report the structure of the data and the maximum and minimum

c values stored.

write(*,'(" Data Structure" /

& " Dimension Name Length " / /

& 4(a16, i10 /))')

& (dimnames(n), ldim(n), n=1,ndim)

if (rmax .ge. rmin) then

write(*,'(" Maximum value found: ", 1pe14.5)') rmax

write(*,'(" Minimum value found: ", 1pe14.5)') rmin

else

write(*,'(" Data set includes only ''missing'' data.")')

endif

end

2.7 Reducing memory requirements

In the previous example the arrays might have been declared much larger than
necessary, just to make the program general enough to retrieve the largest data set
likely to be encountered. When memory is scarce, it would be better to declare the
array to be just large enough to accomodate the data being retrieved. Furthermore, the
data mask is not really needed in this case since missing values are also indicated by the
value, 1.0e20, stored in array adata. The following revised version of the program given
in the previous example dynamically allocates (upon execution) just enough memory
to accomodate the data retrieved. It also avoids creating the data mask, which is not
needed. Besides the EzGet subroutines discussed previously, the following subroutines
will be called:

getfield This subroutine simply retrieves data, but does no masking or map-
ping to a di�erent grid. Unlike getnogap, no data mask or weights are returned.

shape Before retrieving data, this subroutine returns the length of each dimen-
sion of a �eld as it will be retrieved by EzGet.

2.7 Reducing memory requirements 29

program smmaxmin

c This program

c ** obtains the structure of a variable (the number and length

c of each of its dimensions).

c ** finds the maximum and minimum value stored for the variable

c (but skips 'missing' data).

c ** prints out the information retrieved.

c

c This program dynamically allocates enough memory to accomodate

c the retrieved data. It also avoids creating a data mask.

pointer (ptadata, adata)

real adata(*)

real begdom(4), enddom(4), rmax, rmin, err

integer ldim(4), isize, ndim, n

character*16 dimnames(4)

c ---

c Initialize EzGet:

call initget

c ---

c Define "missing" data value. (Neither of these calls is

c actually necessary, since the default input and output missing

c value is 1.0e20.

call defmisc('input missing value', 'real', 1.0e20)

call defmisc('output missing value', 'real', 1.0e20)

c ---

c Define variable 1 as 'tas' and indicate path/filename where

c it is stored. In subsequent calls to EzGet (e.g., defdim

c getdata, and getcoord), this field will be referred to by

c the index assigned here (i.e., 1).

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Obtain from the file the number of dimensions, the names of the

c dimensions and the full domain of each dimension of the variable

c (as originally stored).

call domain(1, ndim, dimnames, begdom, enddom)

30 Tutorial Examples

c ---

c Define domain for variable 1: retrieve all data stored

do 100 n=1,ndim

call defdim(1, n, dimnames(n), 'unit', 'as saved', 0., 0., 0.)

100 continue

c ---

c Retrieve the length of each dimension of the variable and the

c total length of the vector of data that will be extracted:

call shape(1, ldim(1), ldim(2), ldim(3), ldim(4), isize)

c where

c 1: The first argument has the value 1 and specifies that

c the dimension lengths that will be returned for variable

c 1 are being requested.

c ldim(1), ldim(2), etc.: return the lengths of dimensions 1, 2, 3,

c and 4, respectively.

c isize: returns the size of the array needed to accomodate the

c retrieved data (which may be different from the number

c of elements stored in the file for this variable).

c ---

c Allocate memory for array.

c Note: some platforms may have slightly different functions

c for allocating memory dynamically.

ptadata = malloc(isize*4)

c where

c ptadata: is a pointer to array adata as declared at the beginning

c of this program.

c isize: specifies how many words to allocate for

c array adata.

c ---

c Inform EzGet of array size.

call defmisc('data size', 'integer', isize)

c ---

c Extract variable 1 from file.

2.7 Reducing memory requirements 31

call getfield(1, adata)

c where

c 1: The first argument specifes that data should be retrieved

c from variable 1.

c adata: returns the extracted data.

c ---

c Close all files opened by EzGet.

call closeget

c ---

c Find the maximum and minimum values retrieved (skipping "missing"

c values).

rmax = -1.e40

rmin = 1.e40

do 200 n=1,isize

if (abs(adata(n)-1.0e20) .gt. 1.e15) then

rmax = amax1(rmax, adata(n))

rmin = amin1(rmin, adata(n))

endif

200 continue

c ---

c Release memory allocated for adata.

c Note: some platforms may have slightly different functions

c for releasing memory.

err = free(ptadata)

c where

c ptadata: is the pointer to array adata, as declared at the

c beginning of this program.

c ---

c Report the structure of the data and the maximum and minimum

c values stored.

write(*,'(" Data Structure" /

& " Dimension Name Length " / /

& 4(a16, i10 /))')

& (dimnames(n), ldim(n), n=1,ndim)

32 Tutorial Examples

if (rmax .ge. rmin) then

write(*,'(" Maximum value found: ", 1pe14.5)') rmax

write(*,'(" Minimum value found: ", 1pe14.5)') rmin

else

write(*,'(" Data set includes only ''missing'' data.")')

endif

end

2.8 Another example of area-averaging

One of the advantages of retrieving data with EzGet is that an array of weights can
be generated proportional to the area of the grid cells (and in the following example
also proportional to the number of days in each month). This makes it easy to compute
annual averages and area averages. Suppose, for example, you want to compute the
global mean di�erence between modeled and observed annual mean temperature. The
array of weights can be used to select only those regions of the globe where data are
available for every month of the year. Then the same weights can be used to weight
the data appropriately.

There is more than one way to proceed, but in the following program the model
output is mapped to the grid of the observations before masking out regions of missing
data.

program meandiff

c This program

c

c ** retrieves observed and model-simulated monthly surface air

c temperature for the year 1979 (first year of AMIP run).

c ** determines which grid cells are not missing any data and then

c for these grid cells

c ** computes the global average, annual mean difference between the

c observed and model-simulated temperatures.

c

c The data contributing to the averages are area-weighted and also

c weighted by the number of days in each month.

parameter (nlon=100, nlat=50, nmon=12, n4=0)

2.8 Another example of area-averaging 33

real datamodl(nlon,nlat,nmon), wtsmodl(nlon,nlat,nmon),

& dataobs(nlon,nlat,nmon), wtsobs(nlon,nlat,nmon),

& wtobs(nlon,nlat)

double precision asum, wtsum

integer lons, lats, mons, i4, i, j, m, mm

c ---

c Initialize EzGet and define "missing" data value:

call initget

call defmisc('input missing value', 'real', 1.0e20)

c ---

c Define variable 1 as the observed surface air temperature and

c indicate path/filename where data are stored.

call defvar(1, 'tas', '/scratch/staff/lisa/amip_obs/nasa-amip_t')

c ---

c Define domain for variable 1.

call defdim(1, 1, 'longitude', 'width', 'range',

& -180.0, 180.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range', -90.0, 90.0, 0.0)

call defdim(1, 3, 'time', 'month', 'nearest', 109., 120., 0.0)

c ---

c Extract variable 1 (observed field).

lons = 0

lats = 0

mons = 0

i4 = 0

call getdata(1, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsobs, dataobs)

c ---

c Define variable 2 as the modeled surface air temperature and

c indicate path/filename where data are stored.

call defvar(2, 'tas', '/amipsp/drs/tas/tas_bmr')

c ---

c Define domain for variable 2.

34 Tutorial Examples

call defdim(2, 1, 'longitude', 'width', 'range',

& 0.0, 0.0, 360.0)

call defdim(2, 2, 'latitude', 'gaussian', 'range',

& 0.0, 0.0, 0.0)

call defdim(2, 3, 'time', 'month', 'nearest', 109., 120., 0.0)

c ---

c Regrid model output to observed grid

call defregrd(2, 'to', 1, 'area-weighted', 0,0.0,0.0, 0,0.0,0.0)

c ---

c Extract variable 2 (modeled field).

call getdata(2, nlon,nlat,nmon,n4, lons,lats,mons,i4,

& wtsmodl, datamodl)

c ---

c Compute annual mean at each grid cell, but only if all 12 months

c of data are available for both the model and the observations.

c If data is available, weight by the area of the grid cell and

c the number of days in a month.

do 300 j=1,lats

do 200 i=1,lons

mm = 0

do 100 m=1,mons

if (wtsmodl(i,j,m)*wtsobs(i,j,m) .gt. 0.0) mm = mm + 1

100 continue

if (mm .eq. 12) then

wtobs(i,j) = wtsobs(i,j,1)

else

wtobs(i,j) = 0.0

endif

200 continue

300 continue

c ---

c Compute global average, annual mean difference

2.8 Another example of area-averaging 35

asum = 0.0

wtsum = 0.0

do 600 m=1,nmon

do 500 j=1,nlat

do 400 i=1,nlon

asum = asum + wtobs(i,j)*(datamodl(i,j,m)-dataobs(i,j,m))

wtsum = wtsum + wtobs(i,j)

400 continue

500 continue

600 continue

c ---

c Write area-weighted annual mean difference between model and

c observed fields.

if (wtsum .gt. 0.0) then

asum = asum/wtsum

write(*,'("annually-averaged fraction of globe with data: ",

& f12.7)') wtsum

write(*,'("global, annual mean difference: ", f12.3)') asum

else

write(*,'(

& " data missing everywhere for at least 1 month of the year")')

endif

c ---

c Close all files opened by EzGet.

call closeget

end

36 EzGet Subroutines

3 EzGet Subroutines

The EzGet subroutines that you will most likely need to call are documented in
this section. First brief descriptions of the alphabetically ordered EzGet subroutines
are provided:

closeget This subroutine closes any �les opened by EzGet.

clrtable This subroutine clears a \dimension table" internal to EzGet. This
may be necessary from time to time to make room for new dimension information.

defdim This subroutine speci�es both the dimension ordering for data that will
be retrieved and the desired domain. It also provides information for creating an
array of \weights," typically set proportional to the grid-cell areas.

defdimi This subroutine is similar to defdim, but the domain is speci�ed by
index, rather than by coordinate range.

defgeog This subroutine is called to select data from certain geographical re-
gions, so that when a �eld is retrieved, all data outside those regions are masked
out.

defmisc This subroutine (`de�ne miscellaneous') can be used to override cer-
tain default parameters assumed by EzGet (e.g., the value used to identify missing
data, a parameter controlling the reporting of EzGet error messages, etc.).

defregrd This subroutine controls mapping of data to a speci�ed grid.

defvar This subroutine de�nes a variable that will be referenced subsequently
by a simple integer index.

defvarex This subroutine is similar to defvar but must be used if more than
one variable with the same name is stored in a �le.

domain This subroutine retrieves from a �le the number of dimensions, the
names of the dimensions and the full domain of each dimension of a �eld (as
originally stored) for any variable.

domlimit After data have been retrieved (or after shape has been called),
this subroutine returns the domain limits of a speci�ed dimension (which are
determined by your speci�cations through calls to defdim).

getcoord After data have been retrieved (or after shape has been called), this
subroutine returns a vector of coordinate values of a speci�ed dimension.

getdata This subroutine retrieves data, possibly mapping it to a di�erent grid
and masking user-speci�ed geographical regions, and creates an appropriate mask
(or set of \weights") associated with the data. It di�ers from getnogap in that
the data are put into a multidimensional array structure and do not necessarily
occupy contiguous memory.

3.1 Subroutine closeget 37

getdimwt After data have been retrieved (or after shape has been called), this
subroutine returns a vector containing the weights associated with a speci�ed
dimension.

getedges After data have been retrieved (or after shape has been called), this
subroutine returns a vector containing the locations of the grid cell edges (i.e.,
grid cell boundaries) for a speci�ed dimension.

getfield This subroutine simply retrieves data, but does no masking or map-
ping to a di�erent grid.

getgeog This subroutine creates a geography mask for a speci�ed region. Nor-
mally you do not need to create this mask as a separate step because defgeog

will already have made it possible to select the desired geographical regions.

getnogap This subroutine retrieves data, possibly mapping it to a di�erent
grid and masking user-speci�ed geographical regions, and creates an appropriate
mask (or set of \weights") associated with the data. It di�ers from getdata in
that the data are forced to occupy contiguous memory.

initget This subroutine must be called to initialize EzGet. It assigns default
values to a few parameters and sets up some internal tables.

lendims After retrieving data, this subroutine returns the length of each di-
mension of a variable that has been retrieved by EzGet. It would typically be
called after retrieving data with getnogap or getfield.

shape Before retrieving data, this subroutine returns the length of each dimen-
sion of a �eld as it will be retrieved by EzGet.

varinfo This subroutine returns descriptive information retrievable from the
�le containing a de�ned variable. Information retrievable includes the data source,
title, units, date, time, and variable-type.

3.1 Subroutine closeget

This subroutine closes any �les opened by EzGet and prints out a warning message
if any errors or warnings were encountered by EzGet. It is generally a good idea to call
this subroutine before a program ends. Subroutine closeget has no arguments, so it
is called as follows:

call closeget

Note that while EzGet is active (i.e., after initget is called and before closeget

is called), unit numbers 90{94 and 95{96 are reserved for EzGet. (See Section 4.1 for
further information.)

38 3.3 Subroutine defdim

3.2 Subroutine clrtable

This subroutine clears a \dimension table" internal to EzGet. The dimension ta-
ble may become �lled after too many �elds with di�erent coordinate dimensions have
been retrieved by EzGet, and it may be necessary to make room for new dimension
information.2 You will learn of this necessity by an explicit error message transmitted
by EzGet, so you may choose to wait for such a message before including a call to
clrtable. Subroutine clrtable has no arguments, so it is called as follows:

call clrtable

Once the dimension table has been cleared, it will be impossible to obtain the informa-
tion about a variable previously accessed by EzGet, which would normally be retrievable
by subroutines domlimit, lendims, getcoord, getedges, and getdimwt.

3.3 Subroutine defdim

This subroutine speci�es the dimension ordering and the desired domain for data
that will be retrieved. It also is called to specify information for creating an array of
\weights," typically set proportional to the grid-cell areas. After creating the set of
weights as speci�ed by calls to defdim, EzGet may reset weights to zero where data
are missing or have been masked (e.g., if only a limited geographical region has been
selected through a call to subroutine defgeog). A call to defdim is of the form:

call defdim(var-index, dim-position, dim-name, weight-type,

& domain-type, bdry1, bdry2, dcycle)

where

var-index (integer) speci�es which variable (de�ned by calling defvar or defvarex)
will be provided with dimension information by this call to defdim. If var-index
is set to 0, then the dimension information will be assigned to all variables.

dim-position (integer) speci�es which dimension will be de�ned by this call to
defdim. When the data are retrieved, the ordering of the dimensions is de-
termined by this number. For example, if dim-position has a value of 2, then
the data will be retrieved such that this is the second dimension. (Note that,
following the FORTRAN convention, the �rst dimension varies most rapidly as
we move through contiguous storage.) When EzGet is initialized, all dimensions

2The dimension table contains room for 100 di�erent coordinate dimensions, so it normally will
become �lled only when processing many di�erent models.

3.3 Subroutine defdim 39

are designated as being `not de�ned'. You may want to reset all dimensions to
their `not de�ned' state, which can be done by calling defdim with dim-position

set to 0. You may also `unde�ne' a single dimension by setting dim-position to
a negative value. For example if dim-position is assigned a value of -2, then the
second dimension will be reset to `not de�ned'. When dim-position is assigned
0, -1, -2, -3, or -4, the other arguments in the subroutine call are ignored (except,
of course, var-index).

dim-name (character string) is the name of the dimension being de�ned.

weight-type (character string) controls the creation of the weighting-factor associ-
ated with the dimension. The total weight for a grid cell is the product of the
weighting-factors for each of the grid-cell's dimensions. If data are missing or
masked out, then the corresponding weights are set to 0. The following options
are available for this parameter:

'unit' | weight by 1 each grid-cell within the domain retrieved. This di�ers
from 'equal' in that here the sum of the weights is equal to the number of
grid-points in the retrieved domain of the dimension (before masking).

'equal' | weight equally each grid-cell within the domain retrieved. This
di�ers from 'unit' in that here the sum of the weights over the full stored
domain is equal to 1 (before masking). If only a fraction of the full domain
is retrieved, then the sum of the weights will equal this fraction.

'width' | Set weights proportional to the width of each grid-cell, assuming
the grid cells are equally spaced (i.e., assuming the grid-cell boundaries
are half-way between the grid-cell centers). (Note, however, the edge of
a pressure dimension is assumed to be greater than or equal to 0.) The
weights generated are normalized by the total width of the domain that
was originally stored. If a fraction of that domain is retrieved, then the
sum of the weights will equal that fraction. (For a longitude dimension,
the normalization is carried out under the assumption that the stored data
spans 360�, even when it does not.)

'bmr', 'ccc', 'col', etc. | can be speci�ed only for longitude or latitude
dimensions and will create appropriate weights proportional to grid cell area
for each of the AMIP or PMIP models. See Appendix A for a table identi-
fying the model acronyms recognized by EzGet.

'gaussian' | weight each grid-cell assuming the dimension represents gaus-
sian latitudes. Note that in creating gaussian weights, EzGet assumes as a
default that in the �le containing the data to be retrieved, the number of
latitude grid-points spans the globe. For T21 resolution, for example, the
number of latitude grid points stored in the �le should be 32. If, in fact,
data from some nonglobal latitude domain have been stored, then you must
specify that the data have been stored on a subdomain of a T21 grid by
calling subroutine defmisc as described in Section 3.6.

40 3.3 Subroutine defdim

'cosine' | weight by the cosine of latitude (i.e., j sin(edge1) � sin(edge2)j,
where edge1 and edge2 are edges of a latitude grid-cell, assumed to be
half-way between grid-cell centers).

'month' | weight by the number of days in a month. This assumes that the
time dimension has units of months with January referenced by 1., 13., 25.,
etc., February referenced by 2., 14., 26., etc. The sum of the weights for
a full year of data will be 1. This weighting works correctly only for data
from a 365-day year.

'leapyr' | weight by the number of days in a month. This assumes that the
time dimension has units of months with January referenced by 1., 13., 25.,
etc., February referenced by 2., 14., 26., etc. The sum of the weights for
a full year of data will be 1. This weighting works correctly only for data
from a 366-day year.

domain-type (character string) is the argument determining the extent of the domain
that will be retrieved. The following options are available for this parameter:

'as saved' | retrieve the full domain for this dimension in the same order
that it appears in the �le.

'range' | retrieve data from the domain speci�ed by bdry1 and bdry2. If
the weighting option (weight-type) is speci�ed as 'width', 'gaussian',
'cosine', or a model acronym (e.g., 'bmr', 'ccc', etc.), then if any part
of a grid cell falls within these boundaries, data will be retrieved from that
grid cell (even if the actual coordinates of that grid cell lie outside the spec-
i�ed range). If the weighting option (weight-type) is speci�ed as 'equal',
'unit', 'month' or 'leapyr', then only data with coordinates that lie
within the domain speci�ed by bdry1 and bdry2 will be retrieved. (Note
that in this case, if you specify a narrow range for the domain, smaller than
the width of a grid cell, it is possible that no grid-cell centers will lie within
the domain, and no data will be retrieved.) Under all weighting options, if
all grid cells lie completely outside the domain requested, then no data will
be retrieved.

'nearest' |retrieve data with coordinates within the range speci�ed by bdry1
and bdry2, except under the following two circumstances: 1) if no coordi-
nates fall within bdry1 and bdry2, then retrieve the plane of data nearest
to the region speci�ed by bdry1 and bdry2, or 2) if dcycle is not 0.0 and
exactly one complete cycle is speci�ed (i.e., jbdry2� bdry1j = dcycle),
then EzGet will shift the domain by up to 1/2 grid-cell in order to avoid
splitting the grid-cell at the edge of the domain. (Examples will be given
later in this section.)

bdry1 (real) speci�es the desired beginning boundary of the domain to be retrieved,
but note that this argument is ignored if domain-type is set to 'as saved'. If

3.3 Subroutine defdim 41

bdry1>bdry2, then the order of data retrieval will be such that this coordinate
decreases monotonically.

bdry2 (real) speci�es the desired ending boundary of the domain to be retrieved, but
note that this argument is ignored if domain-type is set to 'as saved'.

dcycle (real) indicates the period of cyclic coordinates such as longitude (e.g., if the
units are degrees longitude, then -180.0 = 180.0 = 540.0 and the cycle interval is
360.0 degrees) or possibly the annual cycle (e.g., if the units are months, then 1 =
13 = 25, and the cycle interval is 12 months). With this information, EzGet can
�nd data that appear to lie outside of the range speci�ed by bdry1 and bdry2,
but in fact are simply assigned a di�erent but equivalent coordinate value. For
non-cyclic coordinates, dcycle should be set to 0.0. This argument is ignored if
domain-type is set to 'as saved'. In all cases of cyclic data only a single cycle
should reside on the �le (i.e., do not include any \wrap-around points"). This
implies that if multiple years of monthly data reside on the �le, you should always
set cycle to 0.0, not 12.0, for the time dimension.

The assignments made by a call to defdim remain in e�ect unless you subse-
quently call either defdim or defdimi and rede�ne dimension dim-position for vari-
able var-index, or unless you reinitializes EzGet with a call to initget. If you in-
struct EzGet to map data to a new grid and if the call to subroutine defregrd speci�es
target-cntrl as 'to', then domain-type, bdry1, and bdry2 will be overridden and
the domain will be that speci�ed for the target grid (but which dimension varies most
rapidly will still be determined by the defdim calls for the source data). If you in-
struct EzGet to map data to a new grid and if the call to subroutine defregrd speci�es
target-cntrl as 'uniform' and nlat>0 or nlon>0, then domain-type, bdry1, and
bdry2 will be overridden and the domain will be determined by the arguments in your
call to defregrd.

At �rst you might be somewhat ba�ed as to what to specify for weight-type and
domain-type, but the most usual choices are described here:

� Latitude: Usually you will want to extract a precisely de�ned domain (not nec-
essarily coinciding with grid-cell boundaries) and create weights proportional to
grid cell area. If this is the case then domain-type should be set to 'range'

and weight-type should be set to either 'cosine' or 'gaussian', depending
on the grid. In many cases a convenient way to generate area-weights is to set
weight-type to the model acronym as given in Appendix A.

� Longitude: Usually you will want to extract a precisely de�ned domain (not
necessarily coinciding with grid-cell boundaries) and create weights proportional
to grid cell area. If this is the case then domain-type should be set to 'range'

42 3.3 Subroutine defdim

and weight-type should be set to either 'width' or the model acronym as given
in Appendix A. If, however, you want to retrieve data spanning 360 degrees, but
without possibly splitting one grid cell in two, then domain-type should be set
to 'nearest'.

� Time (month): The most common choice for domain-type is probably 'nearest'
when monthly data are retrieved. In order to create weights appropriate for
computing annual means frommonthly data, specify either 'month' or 'leapyr',
depending on whether the year is of normal length or a leap year.3 If, however, the
model year comprises twelve 30-day months (rather than the realistically de�ned
calendar months), then one would normally specify 'equal'.

� Level or Time (hour, day, year, etc.): In this case the usual choice for domain-
type will be 'nearest'. You will usually want to assign equal weighting to each
grid cell, so set weight-type either to 'unit' or 'equal'. Note that pressure
(i.e., mass) weighting cannot be generated by EzGet. Also note that if a dimension
is very long (more than 20,000 elements in the �le from which you are retrieving
data or more than 2000 elements actually retrieved, then 'unit'weighting should
be speci�ed, unless the default lengths just quoted are overridden by a call to
subroutine defmisc as described in Section 3.6.

If a given dimension of a variable (as it is stored) contains only 1 element, some of
the above weighting factors will not work properly. For this special case, EzGet will
override your speci�cations and assign this dimension 'unit' (except if 'month' or
'leapyr' has been speci�ed, in which case the weight will be equal to the number of
days in the month divided by the number of days in the year).

If a given dimension of a variable (as it is stored) contains only 1 element, it is also
not even necessary to call defdim to de�ne this dimension. In this case EzGet will
assume that you want the only domain available for this dimension. EzGet will extract
the data and assign 'unit' weighting to this dimension.

For further information concerning the di�erence between the various speci�cations
of weight-type and domain-type consider the following. Suppose one dimension of an
array of stored data has coordinates 3.0, 4.0, 5.0, 6.0, and 7.0 as illustrated below (with
the boundaries of each grid cell indicated by vertical line segments and the coordinate
positions indicated by the dots):

r r r r r

3 4 5 6 7

3Note that this only works when the time dimension being de�ned is in units of months with month
1, 13, 25, etc. corresponding to January.

3.3 Subroutine defdim 43

Unless 'gaussian', 'month', 'leapyr', 'csu', 'ucl', 'lmd', or 'lmd' has been
speci�ed as the weighting option, EzGet assumes that the boundaries of the grid-cells
lie half-way between the coordinates (i.e., at 2.5, 3.5, etc.). For this dimension suppose
we want to extract a certain sub-domain of this data. The following examples indicate
some options for controlling the domain that will be retrieved and the weights that will
be assigned to each cell containing data. In these examples we assume no missing data
and no masking.

In the following illustrations the domain you request by calling defdim is indicated
by the over-bracket and the extracted grid-points are indicated by the symbols, `*'.
The weights assigned each retrieved grid point are proportional to the intervals de�ned
by the underbrackets. The illustrations show that the extracted grid-points and the
weights depend on the values assigned to weight-type and domain-type:

Example 1:

requested domain: r r r r r

'range', 'width' * * *

'range', 'equal' * *

'nearest', 'width' * *

Example 2: No wrap-around permitted (i.e. you have speci�ed dcycle to be 0.0).

requested domain: r r r r r

'range', 'width' * *

'range', 'equal' *

'nearest', 'width' *

Example 3:

requested domain: r r r r r

'range', 'width' *

44 3.3 Subroutine defdim

'range', 'equal' *

'nearest', 'width' *

Example 4:

requested domain: r r r r r

'range', 'width' * *

'range', 'equal' no data retrieved

'nearest', 'width' *

Example 5: No wrap-around permitted.

requested domain: r r r r r

'range', 'width' no data retrieved

'range', 'equal' no data retrieved

'nearest', 'width' *

Suppose one dimension of an array of data is longitude with coordinates -180., -170.,
. . ., 160., 170. as illustrated below:

r r . . . r r

-180 -170 160 170

If the wrap-around option is in e�ect, then each grid-cell can be identi�ed by more
than one coordinate value. For example,

r r . . . r r

-180 -170 160 170
180 190 520 530
-540 -530 -200 -190

3.3 Subroutine defdim 45

Example 6: Wrap-around activated (i.e., dcycle set to 360.0).

Suppose bdry1 is assigned the value 162. and bdry2 is assigned the value 180., then
the wrap-around of data implies the following (because the last grid cell extends only
to 175, the data is wrapped around, duplicating the �rst grid-cell in the last position):

r . . . r r r

-180 160 170 180

requested domain: r . . . r r r

'range', 'width' * * *

'range', 'equal' * *

'nearest', 'width' * *

Example 7: Wrap-around activated, complete cycle requested.

Suppose bdry1 is assigned the value -180. and bdry2 is assigned the value 180.,
then the wrap-around of data implies the following:

r . . . r r r

-180 160 170 180

requested domain: r . . . r r r

. . .

'range', 'width' * * * *. . .

'range', 'equal' * * * *. . .

'nearest', 'width' * * *. . .

Note that when 'range' and 'width' are speci�ed, data are extracted covering the full
domain (from -180 to 180), which requires one grid cell to be split into two, each given
half the weight of the original. To avoid splitting grid cells (and to extract a complete
cycle of 360�), 'nearest' should be speci�ed in which case the domain extracted is
shifted slightly to the interval -185 to 175.

46 3.5 Subroutine defgeog

3.4 Subroutine defdimi

This subroutine is similar to subroutine defdim but the domain is speci�ed by index,
rather than by a coordinate range. A call to defdimi is of the form:

call defdimi(var-index, dim-position, dim-name, weight-type,

& indx1, indx2)

where

var-index, dim-position, dim-name, and weight-type are de�ned exactly as in
subroutine defdim.

indx1, indx2 (integers) specify by index the �rst and last planes of data that should
be retrieved. For example, if indx1 and indx2 are speci�ed as 3 and 5, respec-
tively, then the third, fourth and �fth planes of dimension dim-name will be
retrieved. If indx1 and indx2 are speci�ed as 5 and 3, respectively, then the �fth,
fourth and third planes of dimension dim-name will be retrieved (in that order).
If indx1 and indx2 are speci�ed as -5 and -3, respectively, then the �fth, fourth
and third planes from the end of the domain will be retrieved (i.e., jj-4, jj-3,
and jj-1, where jj is the length of the dimension. And as a �nal example, if
indx1 and indx2 are speci�ed as -3 and -5, respectively, then the third, fourth
and �fth planes from the end of the domain will be retrieved.

3.5 Subroutine defgeog

This subroutine is called in order to specify the geographical regions (within the
domain de�ned by calls to defdim), from which data will be retrieved. All data outside
the selected regions will be masked out (i.e., the \weights" will be set to 0.0 and the
data will be set to the \missing value").

For selection of geographical regions, an input data set must be provided, which may
either be a simple land-ocean-sea ice mask (or even more simply, a land-sea mask), a
land fraction (expressed as a percent), a sea ice fraction (expressed as a percent), or
a more detailed geographical data set uniquely de�ning regions typically the size of a
continent (as described in more detail below). Appendix B contains the list of regions
identi�ed on the standard geographical maps for AMIP and PMIP models available
from PCMDI. The grid on which the geography mask is stored must be identical to
either the grid of the source data being retrieved or a new grid to which the data will
be mapped.

A call to defgeog is of the form:

3.5 Subroutine defgeog 47

call defgeog(var-index, inorout, mask-index, select)

where

var-index (integer) speci�es to which variable (de�ned previously or subsequently
by a call to defvar or defvarex) the geography mask will be applied.

inorout (character string) indicates whether the geography mask should be applied
before or after mapping data to a new grid. This argument should be assigned
one of the following strings:

'in' | if the geography mask should be applied before mapping data to a new
grid.

'out' | if the geography mask should be applied after mapping data to a new
grid.

mask-index (integer) speci�es the variable (de�ned previously or subsequently by a
call to defvar or defvarex) that contains the geography data.

select (character string) is a list of regions, separated by commas, specifying which
geographical regions of the globe should be selected (i.e., not masked). If the
geography data simply indicates regions of land, ocean, and possibly sea-ice, then
this argument might be, for example, 'ocean, sea ice', which would select all
regions except land. If the geography data contains the more detailed geograph-
ical information, then this argument might be, for example, 'North America,

South America, Greenland', which selects the major land areas of the Western
Hemisphere. Note that the commas separating the listed regions may optionally
be followed by blanks. For example, either 'Africa, Australia, Antarctica'

or 'Africa,Australia,Antarctica' is acceptable.

Note that if you call degeog twice with inorout set to 'in' for one call and 'out' for
the other call, then one geography mask can be applied before mapping to a new grid,
and another mask can be applied after the mapping. The argument passed as select
would usually be the same when selecting geography both before and after mapping
to a new grid, but this is not required. You might, for example, select 'land' before
mapping and 'North America' after mapping to the new grid.

Even when data remain on the original grid, two di�erent masks can be applied
by calling defgeog twice, once with 'in' speci�ed and once with 'out' speci�ed.
You might want to do this, for example, in order to select ice free regions of the
North Atlantic. You would call defgeog to select 'N. Atl. ocean' (available from
'sftbyrgn' variable) and then call defgeog a second time to eliminate regions of sea
(by selecting 'ocean' from the 'sft' variable).

If this subroutine is not called, then EzGet will not select geographical regions (other
than rectangular regions determined by the domain speci�cations). If after calling this

48 3.5 Subroutine defgeog

subroutine, you want to return to this default state of no masking, defgeog should be
called, but with mask-index set to 0. If you had speci�ed that masks be applied both
before and after mapping the data to a new grid, then defgeog would have to be called
twice with mask-index set to 0, once with inorout set to 'in' and a second time with
it set to 'out'. When mask-index is set to 0, the last argument, select, is ignored.

Note that the geography must be at least a function of longitude and latitude. It
may also be a function of time (and perhaps in unusual circumstances, level). If it is a
function of time (and if the time-dimension is greater than 1), then the time-dimension
should be consistent with the time dimension for the data that you want to retrieve.
If the geography �eld has fewer dimensions than the array of data, then the same
geography mask will be applied to all planes of the data array associated with the
missing dimension(s). Suppose, for example, that the data being retrieved is a function
of longitude, latitude and month, but the geography �eld is not a function of time.
Then the same geography �eld will be applied to each month of data.

Four types of geography data can be used by EzGet: land-ocean-sea ice masks
(with sea ice optional), land fraction expressed as a percent, sea ice fraction expressed
as a percent, or a more detailed geographical data set uniquely distinguishing regions
typically the size of a continent. Data can either be stored as integers or
oating point
(real) numbers.

For land-ocean-sea ice type geography data, EzGet should �nd either the integers,
0, 1, and 2, or the
oating point (real) numbers, 0.0, 1.0, and 2.0, stored for land,
ocean, and sea-ice grid cells, respectively. In this case you should select geographical
regions by specifying 'land' and/or 'ocean' and/or 'sea ice' in a call to subroutine
defgeog.

For land fraction surface-type information (expressed as a percent), EzGet should
�nd either integers or
oating point (real) numbers in the range 0 to 100. To use land
fraction data of this type for the purpose of masking data retrieved by EzGet, you
should either make sure the name of the variable is 'sftl' or 'sftland, or you should
call defmisc with the �rst argument set to 'mask type' and the last argument set
to '1'. You should select geographical regions by specifying 'land' or 'ocean, sea

ice' in a call to subroutine defgeog.

For sea ice fraction surface-type information (expressed as a percent), EzGet should
�nd either integers or
oating point (real) numbers in the range 0 to 100. To use sea
ice fraction data of this type for the purpose of masking data retrieved by EzGet, you
should either make sure the name of the variable is 'sifrc' or 'seaice' or you should
call defmisc with the �rst argument set to 'mask type' and the last argument set to
'2'. You should select a region by specifying 'sea ice' (which will select regions of
sea ice) or 'land, ocean' (which will mask regions of sea ice) in a call to subroutine

3.6 Subroutine defmisc 49

defgeog.

For the more detailed geography data, the table in Appendix B shows the inte-
gers that EzGet assumes have been stored in the geography �le to de�ne the various
geographical regions.

3.6 Subroutine defmisc

This subroutine (`de�ne miscellaneous') can be used to override certain default
parameters assumed by EzGet (e.g., the value used to identifymissing data, a parameter
controlling the reporting of EzGet error messages, etc.). A call to defmisc is of the
form:

call defmisc(param-name, strng-param, numer-value)

where

param-name (character string) indicates which parameter to de�ne. The options are:

'input missing value' | to assign the value you expect missing data to be
identi�ed by on �les you are reading. For example, call defmisc('input

missing value', 'integer', -99) instructs EzGet to interpret as miss-
ing any data point assigned the value -99. For real data, the second argument
should be assigned the value, 'real'. (If this parameter is not set, the data
that will be retrieved are assumed to be
oating point (real) numbers and
the value indicating missing data is 1.0e20.)

'output missing value' | to specify the value you want missing data to
be assigned after it is retrieved. For example, call defmisc('output

missing value', real, 0.0) instructs EzGet to assign the value 0.0 to
any data points that are missing. For integer data, the second argument
should be assigned the value, 'integer'. (If this parameter is not set, the
data that will be retrieved are assumed to be
oating point (real) numbers
and the default value assigned to missing data is 1.0e20.)

'mask type' | to indicate the type of data that is contained in geography
�les used for masking data. If numer-value=1 then EzGet will assume that
land fraction data (expressed as a percent) can be found in geography �les
used for data masking. If numer-value=2, then EzGet will assume that sea
ice fraction data (expressed as a percent) can be found in geography �les
used for data masking. If numer-value=3, then EzGet will assume that
land-ocean-sea ice data are stored (identi�ed by either 0's, 1's, and 2's, or
0.0's, 1.0's, and 2.0's). If numer-value=4, then EzGet will assume more
detailed geographical mask is stored (see Appendix B). If numer-value=0

50 3.6 Subroutine defmisc

(the default), then EzGet will determine what kind of data are stored in the
geography �les, based on the name of the variable { if 'sftl' or 'sftland',
then land fraction (expressed as a percent); if 'sic' or 'sea ice', then sea
ice fraction (expressed as a percent). If the variable name is not one of these
('sftl', 'sftland', 'sic', or 'sea ice'), then EzGet will determine the
type of geography data based on the values stored in the �le. EzGet can
automatically determine whether simple land-ocean-sea ice data are stored
(0's, 1's, and 2's, or 0.0's, 1.0's, and 2.0's), or whether the more detailed
regional geographical data are stored, but EzGet cannot always automati-
cally determine that the data are land or sea ice fractions. In the case of
land fraction (expressed as a percent) the variable should be named either
'sftl' or 'sftland', and for sea ice fraction, either 'sic' or 'sea ice';
otherwise you should call defmisc as just described. For example, if the
variable containing land fraction data (expressed as a percent and stored
as an integer) is named 'landpcnt', then you could call defmisc('mask

type', 'integer', 1) so that EzGet could properly interpret the data
and use it in masking land or ocean areas. The type of geography data
expected will remain the same until defmisc is called again to override it.

'mask type in' | to indicate the type of data contained in geography �les
used for masking data before it has been regridded. This parameter along
with the parameter 'mask type out' make it possible to specify that dif-
ferent types of masks be used before and after regridding. See the discussion
directly above for proper speci�cation of numer-value.

'mask type out' | to indicate the type of data contained in geography �les
used for masking data after regridding. This parameter along with the
parameter 'mask type in' make it possible to specify that di�erent types
of masks be used before and after regridding. See the discussion above for
proper speci�cation of numer-value.

'longitude name' | to assign an alias for the name EzGet will interpret as the
longitude dimension. In this case numer-value is ignored and the longitude
name (a character string) is passed as the second argument (strng-param).
If this parameter is not set, the default value is 'longitude' (which already
has aliases such as 'lon', 'Longitude', and 'LONGITUDE' because EzGet
is generally case insensitive and often only checks the �rst three characters
of a string for equivalence). For example, if data have been stored with the
longitude dimension named 'x', then defmisc('longitude name', 'x',

dummy) should be called to inform EzGet that 'longitude' is also known as
'x'. (Note that the third argument is ignored by EzGet.) EzGet needs to
know which dimension (if any) is longitude in order to correctly trap errors.
(If this parameter is not set, the default value is 'longitude').

'latitude name' | to assign an alias for the name EzGet will interpret as the
latitude dimension. In this case numer-value is ignored and the latitude

3.6 Subroutine defmisc 51

name (a character string) is passed as the second argument (strng-param).
If this parameter is not set, the default value is 'latitude' (which already
has aliases such as 'LATITUDE', 'Latitude', and 'lat' because EzGet is
generally case insensitive and often only checks the �rst three characters
of a string for equivalence). For example, if data have been stored with
the latitude dimension named 'y', then defmisc('latitude name', 'y',

dummy) should be called to inform EzGet that 'latitude' is also known as
'y'. (Note that the third argument is ignored by EzGet.) EzGet needs to
know which dimension (if any) is latitude in order to correctly trap errors.
(If this parameter is not set, the default value is 'latitude').

'data size' | to provide EzGet with the declared size of the data arrays
passed to subroutine getfield. In this case param- value should be an
integer. It is recommended that this parameter be set before calling subrou-
tine getfield. (If this parameter is not set, EzGet will not error exit if the
data actually retrieved by this subroutine exceeds the declared array size.
For example, if the total size of the array of data that will be retrived is ex-
pected to be 1200, then call defmisc('data size', 'integer', 1200).
See Section 3.16 for further information.)

'maximum dimension kept' | to limit the size of dimensions that will be
stored by EzGet in a table for later retrieval. In this case numer-value

should be an integer. The size limit applies to the dimension length ex-
tracted by EzGet, not the dimension as it appears in the original �le. (Com-
pare with the 'longest dimension' option below.) Any dimension longer
than this value must be speci�ed as having 'unit' weighting. Further-
more, if the length exceeds the limit, you will be unable to obtain the
values of the coordinates, weights or grid-cell edges by calling getcoord,
getedges, or getdimwt. All longitude and latitude dimensions used in
mapping data to a new grid or associated with geography �les must be
shorter than the limit. (If this parameter is not set, the default value is
2000. To double this, for example, call defmisc('maximum dimension

kept', 'integer', 4000). If this limit is made too large (greater than
about 16000) there is a risk that an absolute EzGet dimension limit will be
exceeded.)

'longest dimension' | to reduce the storage required when accessing un-
usually long dimensions (usually associated with very long time-series). In
this case numer-value should be an integer. If a dimension is longer than
the limit speci�ed by 'longest dimension', then you must specify 'unit'

weights for this dimension. The size limit applies to the number of elements
stored in the original �le, not the number of elements extracted for this
dimension (compare with the 'maximum dimension kept' option above).
If the length exceeds the limit, you will be unable to obtain the values of
the coordinates, weights or grid-cell edges by calling getcoord, getedges,

52 3.7 Subroutine defregrd

or getdimwt. All longitude and latitude dimensions used in mapping data
to a new grid or associated with geography �les must be shorter than the
limit. (If this parameter is not set, the default value is 20000.)

'truncation' | to indicate to EzGet how many latitude zones span the globe
from pole to pole for a spectral model. EzGet may need to know this in
order to create correct gaussian weights when data being retrieved have
been stored on a non-global domain. In this case numer-value should be
an integer. If EzGet retrieves data from a non-global domain, it is not
necessary to set this parameter as long as the source data were stored on
a global domain. (If this parameter is not set, EzGet assumes that the
original latitude dimension spans the globe and creates gaussian weights
accordingly.)

'error control' | to indicate how many errors detected by EzGet will be
allowed before halting program execution and also whether or not error
messages will be displayed. If numer-value (an integer in this case) is less
than or equal to 0, then no messages will be displayed. If numer-value
equals 0, the program execution will not be halted by EzGet no matter
how many errors are encountered. If numer-value is greater than 0, then
warnings and error messages will be displayed and execution will be halted
when the the number of errors encountered equals the integer speci�ed as
numer-value. (If this parameter is not set, EzGet will print errors and
warnings and will halt execution after encountering 2 errors.)

'version' | to request that EzGet print (to your terminal) the EzGet version
number and date of release { call defmisc('version', ' ', dummy).
(Note that both the second and third arguments are ignored by EzGet.)

strng-param (character string) indicates what type of variable ('real' or 'integer)
will be passed as the third argument (numer-value), or in the case of param-name=
'longitude name' or param-name='latitude name' contains an alias for the
longitude or latitude dimensions, respectively. If, for example, numer-value is
a
oating point (real) number (as it might be, for example, if param-name were
'input missing value'), then strng-param should be set to 'real'.

numer-value (real or integer) passes the value that will be assigned to the param-
eter selected through the �rst argument (param-name), except in the case of
param-name='longitude name' or param-name='latitude name' in which case
the second argument (param-name) contains this information.

3.7 Subroutine defregrd

This subroutine controls mapping of data to another grid. The target grid can be

3.7 Subroutine defregrd 53

de�ned by reference to another de�ned variable, or you can de�ne it as a regular or
gaussian grid by passing the appropriate subroutine arguments. Currently EzGet maps
data to the target grid using an area-weighting alogrithm, which preserves area averages
of the �eld. For correct mapping, you must de�ne the spatial dimensions (with calls to
defdim), correctly specifying the weight-type (for longitude, typically 'width' and
for latitude, typically 'cosine' or 'gaussian', or in either case simply by specifying
the acronym for one of the models appearing in Appendix A).

When this subroutine has been called, the data will be mapped to the target grid
before returning it to you via getdata or getnogap. If the target grid is speci�ed by
an index to a de�ned variable, then the domain retrieved is determined by the domain
speci�ed for that de�ned variable (and the domain of the source grid is ignored).4

The type of weighting appropriate to the source grid and the speci�cation of which
dimension of the retrieved array varies most rapidly are always determined by the
calls to defdim for the source data set. If you specify the target grid through the
arguments of subroutine defregrd, then the domain is either obtained indirectly from
those arguments or from the domain speci�ed for the source grid, as discussed further
below.

A call to defregrd is of the form:

call defregrd(var-index, target-cntrl, target-index, method,

nlat, alat, dellat, nlon, alon, dellon)

where

var-index (integer in the range 1 to 10) speci�es which variable (de�ned previously
or subsequently by a call to defvar), will be mapped to the new grid.

target-cntrl (character string) indicates how the target grid will be de�ned. The
options are:

'none' | to turn o� all mapping speci�cations so that the variable will remain
on the source (i.e., original) grid.

'to' | to map data to the grid of the variable identi�ed by target-index.
The domain is determined by the calls to defdim for the variable referenced
by target-index, so that you will receive the data as if it were originally
stored on the target grid.

'uniform' | to map data to a user-de�ned grid that is evenly spaced in lat-
itude and evenly spaced in longitude. The grid is de�ned by the last six
arguments in the subroutine call (described below).

'gaussian' | to map data to a user-de�ned gaussian grid. The grid is de�ned
by the last six arguments passed to this subroutine (as described below).

4Note that the domain will exactly coincide with the range for the target grid, as if the source data
had actually been stored on the target grid.

54 3.7 Subroutine defregrd

target-index (integer in the range 1 to 10) speci�es which variable de�nes the target
grid. The latitude and longitude coordinates as well as the latitude and longitude
domain will be taken from the variable referenced by target-index, as if the
source data were actually stored on the target grid. If target-index = 0, then
no mapping will be done. If target-cntrl has not been set to 'to', then this
argument is ignored. Be careful not to set target-index to a de�ned variable
that might itself be mapped to a di�erent grid, or you may encounter an error.

method (character string) speci�es the interpolation method that should be used
to map data to the new grid. Currently the only available method is an area-
weighting algorithm, so method should be set to 'area-weighted'.

nlat (integer) controls the latitude domain of the target grid. To generate a gaussian
grid, set nlat to the number of latitude grid cells spanning the globe from pole to
pole (and set target-cntrl to 'gaussian'). In this case the actual domain will
be determined by a call to defdim for the variable identi�ed as var-index. To
generate a uniformly spaced grid you may either: 1) set nlat to 0, in which case
the domain will be deterermined by a call to defdim for the variable identi�ed
as var-index, or 2) set nlat to the number of latitude grid cells you want to
generate. In this second case, the �rst grid cell will be located at alat and
the last grid cell will be located at alat+(nlat-1)*dlat (and the domain will
extend half a grid cell beyond these locations). Thus for a uniformly spaced
grid, if nlat>0, any latitude domain speci�cations made by calls to defdim are
overridden. If target-cntrl has been set to 'to', then the value assigned to
nlat is ignored.

alat (real) speci�es the location of one of the latitude grid cells, but is completely ig-
nored for gaussian grids. If nlat>0 and dlat>0.0, then alat will be the southern-
most grid-cell generated; if nlat>0 and dlat<0.0, then alat will be the northern-
most cell. If nlat=0 then one of the target grid cells generated will be located at
alat, but the domain of the data and the order that it will be retrieved are spec-
i�ed by calls to defdim (so, for example, even if dlat>0.0, data will be retrieved
from north to south if in your call to defdim, bdry2 is speci�ed to be less than
bdry1). If target-cntrl has been set to 'to' or if a gaussian grid is speci�ed,
then this argument is ignored.

dlat (real) is the distance between neighboring latitude grid cells, but is completely
ignored for guassian grids. This argument is also ignored if target-cntrl has
been set to 'to'.

nlon (integer) controls the longitude domain of the target grid. You may either: 1)
set nlon to 0, in which case the domain will be deterermined by a call to defdim for
the variable identi�ed as var-index, or 2) set nlon to the number of longitude
grid cells you want to generate. In this second case, the �rst grid cell will be
located at alon and the last grid cell will be located at alon+(nlon-1)*dlon (and
the domain will extend half a grid cell beyond these locations). Thus if nlon>0,

3.7 Subroutine defregrd 55

any longitude domain speci�cations made by calls to defdim are overridden. If
target-cntrl has been set to 'to', then the value assigned to nlon is ignored.

alon (real) speci�es the location of one of the target longitude grid cells. If nlon>0
and dlon>0.0, then alon will be the western-most grid-cell generated; if nlon>0
and dlon<0.0, then alon will be the eastern-most cell. If nlon=0 then one of the
target grid cells generated will be centered at alon, but the domain of the data
and the order that it will be retrieved are speci�ed by calls to defdim (so, for
example, even if dlon>0.0, data will be retrieved from east to west if in your call
to defdim, bdry2 is speci�ed to be less than bdry1). If target-cntrl has been
set to 'to', then this argument is ignored.

dlon (real) is the distance between neighboring longitude grid cells. If target-cntrl
has been set to 'to', then this argument is ignored.

Although there are several ways to instruct EzGet to map data to a new grid as
documented above, the four most common procedures are summarized here by way of
example.

To map variable 1 (originally stored on a gaussian grid) to the grid of variable 2
(which is uniformly spaced in latitude and longitude):

call defdim(1, 1, 'longitude', 'width', 'range', 0.0, 0.0, 360.0)

call defdim(1, 2, 'latitude', 'gaussian', 'range', 0.0, 0.0, 0.0)

call defdim(2, 2, 'longitude', 'width', 'range', 30.0, 60.0, 360.0)

call defdim(2, 1, 'latitude', 'cosine', 'range', 23.5, 90.0, 0.0)

call defregrd(1, 'to', 2, 'area-weighted',

& 0, 0.0, 0.0, 0, 0.0, 0.0)

The domain is speci�ed through the defdim calls for variable 2, which indicate that
data should be retreived for the region bounded by 30� and 60� E longitude and 23:5�

and 90� N latitude. Note that the order of the dimensions is determined by the defdim
speci�cations for variable 1, so that the data will be ordered with the longitude index
varying most rapidly.

To map variable 1 (originally stored on a regular grid) to a di�erent, uniformly
spaced 10� by 20� latitude-longitude grid, but for a domain limited to the Northern
Hemisphere and with latitudes stored from north to south:

call defdim(1, 1, 'longitude', 'width', 'range', 0.0, 0.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range', 0.0, 0.0, 0.0)

call defregrd(1, 'uniform', 0, 'area-weighted',

& 9, 85.0, -10.0, 18, 10.0, 20.0)

56 3.8 Subroutine defvar

With this method of specifying the target grid, the domain boundaries coincide with
grid cell edges (which lie half-way between the grid cell centers). In the above example,
the domain extends from 90� to 0� N latitude and 0� to 360� E longitude. (The �rst
latitude grid cell, for example, is 10� wide and its center is at 85� N, which means it
extends from 90� N to 80� N.)

To map variable 1 to a regular (uniformly spaced) 10� by 20� latitude-longitude
grid, but for a domain speci�ed through calls to subroutine defdim (which will provide
more precise domain control than in the previous example):

call defdim(1, 1, 'longitude', 'width', 'range', 0.0, 90.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range', 0.0, 30.0, 0.0)

call defregrd(1, 'uniform', 0, 'area-weighted',

& 0, -85.0, 10.0, 0, 10.0, 20.0)

Note that unlike the previous example, the domain boundaries do not necessarily co-
incide with the edges of grid cells. In fact the last latitude grid cell (centered at 30 N)
extends from 25 N to 35 N, but because the domain stops at 30 N, the weights assigned
this grid cell will be proportional to the area of a 5� by 20� cell, whereas the other grid
cells will be assigned weights proportional to the area of 10� by 20� cells.

To map variable 1 (originally stored on a uniformly spaced grid) to a gaussian grid
at T42 resolution:

call defdim(1, 1, 'longitude', 'width', 'range', 0.0, 90.0, 360.0)

call defdim(1, 2, 'latitude', 'cosine', 'range', 0.0, 30.0, 0.0)

call defregrd(1, 'gaussian', 0, 'area-weighted',

& 64, 0.0, 0.0, 0, 0.0, 2.8125)

For gaussian grids the latitude domain is always set by a call to defdim, but the
longitude domain is set by a call to defdim only if the number of longitudes speci�ed
in the call to defregrd is 0, as it is in the above example.

3.8 Subroutine defvar

This subroutine de�nes a variable that can be referenced subsequently by the integer
index you pass to EzGet as the �rst argument. A call to defvar is of the form:

call defvar(variable-index, variable-name, file-name)

where

3.9 Subroutine defvarex 57

variable-index (non-zero integer in the range -10 to 10) is an index. The absolute
value of this index will be used subsequently to identify the data de�ned by
variable-name and file-name. If a positive value is passed to defdim, then
EzGet error exits if the �le or variable cannot be found. If a negative integer
is passed, then EzGet returns the absolute value of variable-index if no errors
are encountered, but EzGet returns -1000 if the �le cannot be found, -1001 if the
variable cannot be found, and -1002 if some other error is encountered.

variable-name (character string of no more than 64 characters) is the name of the
variable as it appears in the �le from which data will be retrieved.

file-name (character string of no more than 120 characters) is the full path (in-
cluding �le name) of the �le that will be accessed by EzGet. (For �les in DRS
format, the `.dic' and `.dat' su�xes should be omitted, but for GrADS (or GRIB)
�les, the `.ctl' su�x should be included.)

If the name of the variable is not unique (i.e., more than one variable with the same
name resides in the �le being accessed by EzGet), then you must de�ne the title and/or
the source by calling subroutine defvarex as described below.

3.9 Subroutine defvarex

This subroutine is similar to defvar but must be used if more than one variable
with the same name is stored in a �le. In this case the \title" and/or the \source" of
the data must be speci�ed, so that EzGet can determine which �eld to retrieve. A call
to defvarex is of the form:

call defvarex(var-index, var-name, var-title, var-source, file-name)

where

var-index (integer in the range 1 to 10) that will be used subsequently to identify
the data de�ned by var-name, var-title, var-source, and file-name.

var-name (character string of no more than 64 characters) is the name of the variable
as it appears in the �le from which data will be retrieved.

var-title (character string of no more than 80 characters) is the title of the variable
as it appears in the �le from which data will be retrieved. If you specify ' ', then
the title will be ignored in determining which variable to retrieve.

var-source (character string of no more than 120 characters) is the source of the
variable as it appears in the �le from which data will be retrieved. If you specify
' ', then the source will be ignored in determining which variable to retrieve.

58 3.11 Subroutine domlimit

file-name (character string of no more than 120 characters) is the full path (in-
cluding �le name) of the �le that will be accessed by EzGet. (For �les in DRS
format, the `.dic' and `.dat' su�xes should be omitted, but for GrADS (or GRIB)
�les, the `.ctl' su�x should be included.)

3.10 Subroutine domain

This subroutine retrieves the number of dimensions, the names of the dimensions
and the domain limits of each dimension as they appear in the �le you are accessing
with EzGet. The domain returned extends from the �rst coordinate value to the last
coordinate value store in the �le. This subroutine may be called after de�ning a variable
(by defvar or devarex). A call to domain is of the form:

call domain(var-index, ndim, dimnames, beg, end)

where

var-index (integer in the range 1 to 10) speci�es from which variable (de�ned by a
calling defvar or defvarex) the domain information should be retrieved.

ndim (integer) returns the number of dimensions.

dimnames (character string, of 16 characters) returns a vector of length ndim that
contains the names of the dimensions.

beg (real) returns a vector of length ndim that will contain the �rst coordinate value
stored for each dimension.

end (real) returns a vector of length ndim that will contain the last coordinate value
stored for each dimension.

3.11 Subroutine domlimit

This subroutine retrieves the domain limits of a single dimension and may be called
after retrieving the data or calling subroutine shape. The domain limits as de�ned
here extend from the leading edge of the �rst grid cell retrieved to the trailing edge of
the last grid cell retrieved. A call to domlimit is of the form:

call domlimit(var-index, dimname, beg, end)

where

3.12 Subroutine getcoord 59

var-index (integer in the range 1 to 10) speci�es from which variable (de�ned by
calling defvar or defvarex) the domain information should be retrieved.

dimname (character string, limited to no more than 16 characters) speci�es the name
of the dimension for which the domain limits are being requested.

beg (real) returns the leading edge of the domain for dimension dimname.

end (real) returns the trailing edge of the domain for dimension dimname.

3.12 Subroutine getcoord

After data have been retrieved (or after shape has been called), this subroutine
returns a vector of coordinate values of a speci�ed dimension. The coordinate informa-
tion refers to what has been or will be retrieved by EzGet, which may, for example, be
a subset of what appears in the original �le. A call to getcoord is of the form:

call getcoord(var-index, idim, coords)

where

var-index (integer in the range 1 to 10) speci�es from which variable (de�ned by
calling defvar or defvarex) coordinates should be retrieved.

idim (integer) is the dimension for which coordinates are being requested (1 for the
�rst dimension of the variable, 2 for the second, etc.)

coords (real) is a vector that will receive the coordinates.

3.13 Subroutine getdata

This subroutine retrieves data, possibly mapping it to a di�erent grid and mask-
ing user-speci�ed geographical regions, and creates an appropriate mask (or set of
\weights") associated with the data. It di�ers from getnogap in that the data are
put into a multidimensional array structure and do not necessarily occupy contiguous
memory. This subroutine checks whether the dimensions expected are correct or at
least that the arrays are dimensioned large enough to accomodate the retrieved data.

A call to getdata is of the form:

call getdata(var-index, ndim1, ndim2, ndim3, ndim4,

+ isiz1, isiz2, isiz3, isiz4, amask, field)

60 3.13 Subroutine getdata

where, on entry to getdata,

var-index (integer in the range 1 to 10) speci�es for which variable (de�ned by
calling defvar or defvarex) data should be retrieved.

ndim1, ... ndim4 (integers) should be identical to the dimensions of amask and
field. If these arrays have fewer than 4 dimensions, the unused dimensions
should be set to either 0 or 1. If set to 0, then an error message will be dis-
played if the �eld actually has more dimensions than allowed for. For exam-
ple, if field is dimensioned field(64,32), then you should specify ndim1=64,
ndim2=32, ndim3=0, and ndim4=0. (Each of these arguments is left unaltered by
EzGet, so for these �rst 4 arguements it is permissible to pass scalars de�ned in
a FORTRAN parameter statement or explicit scalar values.)

isiz1, ... isiz4 are what you expect the length of each dimension of the re-
trieved �eld to actually be. A warning will be provided if the dimensions of the
retrieved �eld di�er from what you expect. The warning for any dimension can be
suppressed by assigning 0 to the corresponding isiz. (Each of these arguments
might be reset by EzGet, so you must assiduously avoid passing scalars de�ned
in a FORTRAN parameter statement or explicit scalar values. Instead of passing
the explicit scalar '32', you should assign the value `32' to some named integer
scalar and then pass the scalar.)

amask is a real array that will be �lled (or partially �lled) by \weights" associated
with field. It can have 1, 2, 3, or 4 dimensions, and these dimensions should be
consistent with ndim1, ndim2, ndim3, and ndim4.

field is a real or integer array that will be �lled (or partially �lled) by the data
identi�ed by var-index. It can have 1, 2, 3, or 4 dimensions, and these dimensions
should be consistent with ndim1, ndim2, ndim3, and ndim4.

and, on return from getdata,

var-index will have been left unmodi�ed.

ndim1, ... ndim4 will have been left unmodi�ed.

isiz1, ... isiz4 will be the lengths of each dimension of the retrieved �eld as
returned by getdata and thus will de�ne the subdomain of the arrays that actually
contain data.

amask will contain the \weights" associated with field. All elements outside the
domain of the �eld retrieved by getdata will be set to 0. If an element in the
field array is \missing" or has been masked out, then the corresponding element
in amask will also be 0.

field will contain the data identi�ed by var-index. All elements outside the domain
of the �eld retrieved by getdata (i.e., if ndimi > isizi) will be set to 0. \Missing

3.14 Subroutine getdimwt 61

data" within the domain retrieved will be set to the value de�ned by a call to
defmisc or by default will be set to 1.e20.

3.14 Subroutine getdimwt

After data have been retrieved (or after shape has been called), this subroutine
returns a vector containing the weights associated with a speci�ed dimension. A call
to getdimwt is of the form:

call getdimwt(var-index, idim, wts)

where

var-index (integer in the range 1 to 10) speci�es for which variable (de�ned by
calling defvar or defvarex) weights should be retrieved.

idim (integer) is the dimension for which the weights are being requested (1 for the
�rst dimension of the variable, 2 for the second, etc.)

wts (real) is a vector that will receive the weights associated with dimension idim.

3.15 Subroutine getedges

After data have been retrieved (or after shape has been called), this subroutine
returns a vector containing the location of the grid-cell edges (i.e. boundaries) for a
speci�ed dimension. The coordinate information is consistent with what has been or
will be retrieved by EzGet, which may, for example, be a subset of what appears in the
original �le. A call to getedges is of the form:

call getedges(var-index, idim, edges)

where

var-index (integer in the range 1 to 10) speci�es for which variable (de�ned by
calling defvar or defvarex) grid-cell information should be retrieved.

idim (integer) is the dimension for which grid-cell edges are being requested (1 for
the �rst dimension of the variable, 2 for the second, etc.)

edges (real) is a vector that will receive the location of the grid-cell edges for dimen-
sion idim. This vector should be dimensioned at least 1 larger than the number
of grid-cells retrieved.

62 3.17 Subroutine getgeog

3.16 Subroutine get�eld

This subroutine simply retrieves data, but unlike getdata and getnogap it does no
masking or mapping to a di�erent grid. No mask is created and the data returned are
forced to occupy contiguous memory. Before calling this subroutine it is recommended
that you �rst call defmisc with the 'data size' option selected, informing EzGet of
the actual declared size of the array that will receive the data. This allows EzGet to
check that your array is large enough to receive the data.

A call to getfield is of the form:

call getfield(var-index, field)

where,

var-index (integer in the range 1 to 10) speci�es from which variable (de�ned by
calling defvar or defvarex) data should be retrieved.

field returns the data identi�ed by var-index. \Missing data" within the domain
retrieved will be set to the value de�ned by a call to defmisc or by default will
be set to 1.e20.

3.17 Subroutine getgeog

This subroutine creates a geography mask for a speci�ed region. Normally you do
not need to create this mask as a separate step because defgeogwill already have made
it possible to select the desired geographical regions. The input geography data set that
will be accessed may be a simple land-ocean-sea ice mask (or even more simply, a land-
sea mask), a land fraction (expressed as a percent), a sea ice fraction (expressed as a
percent), or a more detailed geographical data set uniquely de�ning regions typically the
size of a continent (as described in more detail in Section 3.5). Appendix B contains
a list of regions identi�ed on the standard geographical maps for AMIP and PMIP
models available from PCMDI. A call to getgeog is of the form:

call getgeog(var-index, ndim1, ndim2, ndim3, ndim4,

+ isiz1, isiz2, isiz3, isiz4, amask, select)

where

var-index (integer in the range 1 to 10) speci�es which variable (de�ned by calling
defvar or defvarex) contains the geography data.

3.18 Subroutine getnogap 63

ndim1, ... ndim4 (integers) should be identical to the dimensions of amask. If
this array has fewer than 4 dimensions, the unused dimensions should be set to
either 0 or 1. If set to 0, then an error message will be displayed if the �eld
actually has more dimensions than allowed for. For example, if amask is dimen-
sioned amask(64,32), then you should specify ndim1=64, ndim2=32, ndim3=0,
and ndim4=0. (Each of these arguments is left unaltered by EzGet, so for these
�rst 4 arguements it is permissible to pass scalars de�ned in a FORTRAN pa-
rameter statement or explicit scalar values.)

isiz1, ... isiz4 are what you expect the length of each dimension of the re-
trieved �eld to actually be. A warning will be provided if the dimensions of the
retrieved �eld di�er from what you expect. The warning for any dimension can be
suppressed by assigning 0 to the corresponding isiz. (Each of these arguments
might be reset by EzGet, so you must assiduously avoid passing scalars de�ned
in a FORTRAN parameter statement or explicit scalar values. Instead of passing
the explicit scalar '32', you should assign the value `32' to some named integer
scalar and then pass the scalar.)

amask is a real array that on return indicates whether or not a grid cell lies within
the selected region (a `0.0' indicates the cell lies outside the selected region and
a '1.0' indicates it lies inside the region). In the case of land fraction or sea ice
fraction input data, amask will be returned with a fraction in the range 0.0 to
1.0. amask can have 1, 2, 3, or 4 dimensions, and the declared dimension lengths
should be the same as ndim1, ndim2, ndim3, and ndim4.

select (character string) is a list of regions, separated by commas, specifying which
geographical regions of the globe should be selected. If the geography data sim-
ply indicates regions of land, ocean, and possibly sea-ice (as stored in 'sft' �les)
then this argument might be, for example, 'ocean, sea ice', which would se-
lect all regions except land. If the geography data contains the more detailed
geographical information (as stored in sftbyrgn �les), then this argument might
be, for example, 'North America, South America, Greenland', which selects
the major land areas of the western hemisphere. Note that the commas sepa-
rating the listed regions may optionally be followed by blanks. For example, ei-
ther 'Africa, Australia, Antarctica' or 'Africa,Australia,Antarctica'
is acceptable. See Section 3.5 for further explanation.

3.18 Subroutine getnogap

This subroutine retrieves data, possibly mapping it to a di�erent grid and mask-
ing user-speci�ed geographical regions, and creates an appropriate mask (or set of
\weights") associated with the data. It di�ers from getdata in that the data returned

64 3.20 Subroutine lendims

are forced to occupy contiguous memory.

A call to getnogap is of the form:

call getnogap(var-index, nsize, amask, field)

where,

var-index (integer in the range 1 to 10) speci�es from which variable (de�ned by
calling defvar or defvarex) data should be retrieved.

nsize is the declared size of arrays amask and field, so that EzGet can check that
they are large enough to receive all the extracted data.

amask returns the \weights" associated with field. If an element in the field array
is \missing" or has been masked out, then the corresponding element in amask

will also be 0.

field returns the data identi�ed by var-index. \Missing data" within the domain
retrieved will be set to the value de�ned by a call to defmisc or by default will
be set to 1.e20.

3.19 Subroutine initget

This subroutine must be called to initialize EzGet. It assigns default values to a few
parameters and sets up some internal tables. Subroutine initget has no arguments,
so it is called as follows:

call initget

3.20 Subroutine lendims

After a �eld has been retrieved, this subroutine can return the length of each di-
mension of the retrieved variable. (The lengths returned give the dimensions of the
data retrieved, which may not be the same as the data in the source �le.) Normally
this subroutine would be called after the �eld has been extracted by either subroutine
getnogap or getfield. A call to lendims is of the form:

call lendims(var-index, ldim1, ldim2, ldim3, ldim4, isize)

where

3.21 Subroutine shape 65

var-index (integer in the range 1 to 10) speci�es for which variable (de�ned by
calling defvar or defvarex) dimension information should be retrieved.

ldim1, ldim2, ldim3, ldim4 (integers) returns the lengths of dimensions 1, 2, 3,
and 4, respectively. If the second, third or fourth dimensions do not exist, then
ldim for that dimension is set to 0.

isize (integer) returns the size of the array retrieved (= ldim1*ldim2*ldim3*ldim4,
but with any 0's replaced by 1's).

3.21 Subroutine shape

Before EzGet retrieves data, this subroutine can obtain the length of each dimen-
sion of a variable. (The lengths returned indicate the size that will be retrieved, not
necessarily the size stored.) Typically, this subroutine would be called in order to de-
termine the size of the arrays that will be needed to accomodate the data that will be
retrieved. A call to shape is of the form:

call shape(var-index, ldim1, ldim2, ldim3, ldim4, isize)

where

var-index (integer in the range 1 to 10) speci�es for which variable (de�ned by
calling defvar or defvarex) dimension information should be retrieved.

ldim1, ldim2, ldim3, ldim4 (integers) return the lengths of dimensions 1, 2, 3,
and 4, respectively. If the second, third or fourth dimensions do not exist, then
ldim for that dimension is set to 0.

isize (integer) returns the size of the array needed to accomodate the retrieved data
(= ldim1*ldim2*ldim3*ldim4, but with any 0's replaced by 1's).

3.22 Subroutine varinfo

This subroutine returns descriptive information retrievable from the �le containing
a de�ned variable. Information retrievable includes the data source, title, units, date,
time, and variable-type. A call to varinfo is of the form:

call varinfo(var-index, param, info)

where

66 Avoiding Errors

var-index (integer in the range 1 to 10) speci�es from which variable (de�ned by
calling defvar or defvarex) the information should be obtained.

param (character string) indicates what information should be returned. The options
are:

'units' | to obtain the units of the variable (40 characters).

'source' | to obtain the source description for the variable (120 characters).

'title' | to obtain the title of the variable (80 characters).

'date' | to obtain the date the data were generated (8 characters).

'time' | to obtain the time the data were generated (8 characters).

'type' | type of variable (e.g., R*4, I*4, R*8, I*8, C*16) (8 characters).

'weight' | type of weighting (e.g., 'cosine', 'gaussian', 'uniform', etc.) (vector
of 4 elements, each 8 characters long).

info (character string) returns the requested information. The length of the charac-
ter string depends on what is speci�ed for param, as indicated above.

4 Avoiding Errors

4.1 Input/output devices

Because EzGet (through cdunif) opens �les, it may internally assign and reference the
following FORTRAN input/output device numbers: 91{94 and 96{99. You should
therefore avoid using these same device numbers in your code (unless you have com-
pleted your calls to EzGet subroutines and have been careful to close all �les opened
by EzGet by calling subroutine closeget).

You should also note that the DRS library, which may be accessed by EzGet, has
a limit of 6 DRS �les that can be simultaneously open. Because EzGet might open up
to 4 di�erent DRS �les, you should be careful to avoid opening more than 2 more DRS
�les (outside EzGet), or else the limit of 6 �les will be exceeded.

4.2 Subroutine and common names

When you write programs that will be linked to EzGet, make sure that the names
identifying your subroutines, functions and commons are di�erent from names already
used in EzGet. Speci�cally avoid the following names:

4.3 EzGet size limits 67

� Commons: cdimtbl, cdomain, ciotbl, cregddim, cscalars, cvartbl, usersget

� Integer functions: applywts, doregrid, genwts, getdimen, get
d, mkdimtbl, open-
drs, univunit, xgeog, xregion

� Logical functions: caseindp

� Subroutines: bsslzr, closeget, clrtable, defdim, defdimi, defgeog, defmisc, defre-
grd, defvar, defvarex, domain, domlimit, errcheck, gauaw, getcoord, getdata, get-
edges, getdimwt, get�eld, getgeog, getnogap, getvdata, initget, lendims, maparea,
rgdarea, shape, varinfo

� Combined List: applywts, bsslzr, caseindp, cdimtbl, cdomain, ciotbl, closeget,
clrtable, cregddim, cscalars, cvartbl, defdim, defdimi, defgeog, defmisc, defregrd,
defvar, defvarex, domain, domlimit, doregrid, errcheck, gauaw, genwts, getcoord,
getdata, getdimen, getdimwt, getedges, get�eld, get
d, getgeog, getnogap, getv-
data, initget, lendims, maparea, mkdimtbl, opendrs, rgdarea, shape, univunit,
usersget, varinfo, xgeog, xregion

4.3 EzGet size limits

To limit the amount of memory required in running EzGet, there are limits on how
many di�erent variables and dimensions can be simultaneously accessed. The maximum
number of variables that can be de�ned is 10 (which is why the index in a call to defvar
is limited to the range 1 to 10). The maximum number of di�erent dimensions that
will be accomodated by EzGet is 100. This limit is usually su�cient unless you loop
through some long dimension, each time extracting a single plane. For example if you
have a 10-year long time-series of monthly data of surface air temperature and you cycle
through the individual months, then when you get to month 99, you will encounter an
error because you already will have saved 100 dimensions (the latitude and longitude
dimensions plus 98 time dimensions, one for each of the �rst 98 months). If, on the
other hand, you had extracted the full three-dimensional array at one time, then you
would have generated only 3 dimensions (2 spatial dimensions and 1 time dimension).
You may make room for more dimensions by calling subroutine clrtable at some
convenient point.

There are also limits on how many coordinate values can be extracted and placed in
a table for future reference by EzGet. See subroutine defmisc for further information.

68 Obtaining and Installing EzGet Software

5 Obtaining and Installing EzGet Software

The EzGet software is currently available for the following platforms/operating
systems:5

� Sun/SunOS 4.1.3

� Sun/Solaris 2.4

� IBM RS6000/AIX 3.2

� HP/HP-UX 9.0

� SGI Irix 5.3

You may obtain the FORTRAN libraries comprising EzGet from the PCMDI web
site:

home page: http://www-pcmdi.llnl.gov/
EzGet location: http://www-pcmdi.llnl.gov/ktaylor/ezget/ezget.html

In addition, if you will be reading netCDF �les, you will need to acquire the netCDF
library from the unidata web site:

ftp://ftp.unidata.ucar.edu/pub/netcdf/

There are geography data sets available for the AMIP and PMIP models that allow
you to extract data from speci�c geographical regions (e.g., North America, South
Atlantic, Australia, etc.). Information on how to obtain these geography data sets
along with copies of the examples given in section 2 are available at the PCMDI web
site.

Acknowledgments

I thank Peter Gleckler, Ben Santer, and Curt Covey for exercising early versions
of this software and uncovering several bugs; I appreciate their patience and feedback.
I also thank them and Jean-Yves Peterschmitt, Emannuelle Cohen-Solal, and Larry
Gates for reading parts of this documentation and making comments and suggestions
to improve it. Bob Drach (the author of cdunif) has been helpful in several ways,
including providing assistance in porting this software to di�erent platforms.

This work was performed under the auspices of the U.S. Department of Energy
Environmental Sciences Division by the Lawrence Livermore National Laboratory under
contract No. W-7405-ENG-48.

5EzGet will also be ported to the Cray/Unicos and DEC Alpha/OSF on request.

Acronyms and Weights 69

Appendix A

TABLE 1. The AMIP and PMIP model acronyms given below are recognized
by EzGet and may be used in calls to subroutines defdim or defdimi to specify
\weights" for longitude and latitude. The weights may be needed to map data
to a di�erent grid or may be used to compute area-weighted statistics. You
may specify the correct weights either by the model acronym shown in column
one below, or more explicitly by specifying the options indicated in the third
and fourth columns below.

EzGet AMIP/PMIP Group Longitude Latitude
Acronym1 Weights Weights

'bmr*' Bureau of Meteorology Research Centre
(BMRC)

'width' 'gaussian'

'ccc*' Canadian Centre for Climate Modelling
and Analysis (CCCMA)

'width' 'gaussian'

'ccm*' various groups and versions of the Com-
munity Climate Model

'width' 'gaussian'

'ccs*' Center for Climate System Research
(CCSR)

'width' 'gaussian'

'cnr*' Centre National de Recherches
M�et�eorologiques (CNRM)

'width' 'gaussian'

'col*' Center for Ocean-Land-Atmosphere Stud-
ies (COLA)

'width' 'gaussian'

'csi*' Commonwealth Scienti�c and Industrial
Research Organization (CSIRO)

'width' 'gaussian'

'csu*' Colorado State University (CSU) 'width' 'csu'2

'der*' Dynamical Extended Range Forecasting
(at GFDL)

'width' 'gaussian'

'dnm*' Department of Numerical Mathematics
(of the Russian Academy of Sciences)

'width' 'cosine'

'ech*' Max-Planck-Institut f�ur Meteorologie
(ECHAM model)

'width' 'gaussian'

'ecm*' European Centre for Medium-Range
Weather Forecasts (ECMWF)

'width' 'gaussian'

70 Appendix A

EzGet AMIP/PMIP Group Longitude Latitude
Acronym1 Weights Weights

'gen*' Various groups and versions of the GEN-
ESIS model

'width' 'gaussian'

'gfd*' Geophysical Fluid Dynamics Laboratory
(GFDL)

'width' 'gaussian'

'gis*' Goddard Institute for Space Studies
(GISS)

'width' 'cosine'

'gla*' Goddard Laboratory for Atmospheres
(GLA)

'width' 'cosine'

'gsf*' Goddard Space Flight Center (GSFC) 'width' 'cosine'

'iap*' Institute of Atmospheric Physics (of the
Chinese Academy of Sciences)

'width' 'cosine'

'jma*' Japan Meteorological Agency (JMA) 'width' 'cosine'3

'lmc*' various version of the LMD model used by
the Laboratoire de Mod�elisation du Cli-
mat et de l'Environnement (LMCE)

'width' 'lmc'4

'lmd*' Laboratoire de M�et�eorologie Dynamique
(LMD)

'width' 'lmd'4

'mgo*' Main Geophysical Observatory (MGO) 'width' 'gaussian'

'mpi*' Max-Planck-Institut f�ur Meteorologie
(MPI)

'width' 'gaussian'

'mri*' Meteorological Research Institute (MRI) 'width' 'cosine'

'nca*' National Center for Atmospheric Research
(NCAR)

'width' 'gaussian'

'nce*' National Center for Environmental Pre-
diction (NCEP)

'width' 'gaussian'

'nmc*' National Meteorological Center (NMC) 'width' 'gaussian'

'nrl*' Naval Research Laboratory (NRL) 'width' 'gaussian'

'rpn*' Recherche en Pr�evision Num�erique (RPN) 'width' 'gaussian'

'sng*' State University of New York at Albany /
National Center for Atmospheric Research
(SUNYA/NCAR)

'width' 'gaussian'

Acronyms and Weights 71

EzGet AMIP/PMIP Group Longitude Latitude
Acronym1 Weights Weights

'sun*' State University of New York at Albany
(SUNYA)

'width' 'gaussian'

'ucl*' University of California at Los Angeles
(UCLA)

'width' 'ucl'2

'uga*' The UK Universities' Global Atmospheric
Modelling Programme (UGAMP)

'width' 'gaussian'

'uiu*' University of Illinois at Urbana-Cham-
paign (UIUC)

'width' 'cosine'

'ukm*' United Kingdom Meteorological O�ce
(UKMO)

'width' 'cosine'

'yon*' Yonsei University (YONU) 'width' 'cosine'

1The model acronyms are truncated by EzGet to three characters so in the table above the character
'*' is `wild' meaning that it represents any string of characters, including the null string.

2The UCLA and CSU models have regularly spaced latitudes, but there is no grid point at the poles,
so the most poleward grid cells in each hemisphere have a latitudinal width of 1.5 times the other grid
cells. For proper construction of area weights, specify 'csu' or 'ucl' (not 'cosine') for the latitude
weights.

3The JMA model has a gaussian grid, but the data are reported on a 2.5x2.5 degree regular grid.

4The LMD and LMCE models have equal area grid cells which become elongated in latitude away
from the equator. For proper construction of area weights, specify 'lmd' or 'lmc' for the latitude
weights.

72 Appendix B

Appendix B

TABLE 2. Speci�cations for Geographical Regions

Integer I.D. Region EzGet Speci�cation

0 ocean 'oce*'

1 land 'lan*'

2 sea ice 'seai*', 'sea-i*', 'sea i*'

217 North America 'n* ame*'

216 South America 's* ame*'

215 Greenland 'gre*'

218 Africa 'afr*'

219 Europe & Asia 'eur*asia*'

221 Australia 'aus*'

220 Antarctica 'ant*'

222 Indo Paci�c Islands 'ind* i*'

211 American Lakes 'ame* l*'

212 Ba�n & Hudson Bays 'baf*'

208 Asian & African Lakes 'asi* l*'

207 Mediterranean Sea 'med*'

201 North Paci�c Ocean 'n* pac*'

{ South Paci�c Ocean 's* pac*'

202 South Paci�c (N. of Melbourne) 's* pac* 1*'

203 South Paci�c (N. of Cape Horn 's* pac* 2*'
and S. of Melbourne)

204 South Paci�c (S. of Cape Horn) 's* pac* 3*'

209 North Atlantic Ocean 'n* atl*'

{ South Atlantic Ocean 's* atl*'

213 South Atlantic (N. of Cape of 's* atl* 1*'
Good Hope)

214 South Atlantic (S. of Cape of 's* atl* 2*'
Good Hope)

{ Indian Ocean 'ind*'

205 Indian Ocean (N. of S. Australia) 'ind* 1*'

206 Indian Ocean (S. of S. Australia) 'ind* 2*'

210 Arctic Ocean 'arc*'

Notes concerning Table 2:

� The character '*' is `wild' meaning that it represents any string of characters, including
the null string (but blanks are not permitted except as part of the group, ' & '). For
example, EzGet treats the following strings as equivalent: 'North America', 'n ame',

Geographical Regions 73

'N. Amer.', etc.

� EzGet is case insensitive (at least in interpreting the geography strings) so, for exam-
ple, the following strings are equivalent: 'North America', 'north america', 'NORTH
AMERICA', etc.

� It is permissible to follow the name of an ocean or sea by the strings ' ocean' or
' sea'. For example, 'Mediterranean Sea' is equivalent to 'Mediterranean' and
'North Pacific Ocean' is equivalent to 'North Pacific. Note, however, that the
numbered ocean basin subdomains (e.g., South Pacific 1') should not be followed
by either ' ocean' or ' sea'.

� The following equivalences are recognized:

'S Pac' = 'S Pac 1, S Pac 2, S Pac 3'

'S Atl' = 'S Atl 1, S Atl 2'

'Indian' = 'Indian 1, Indian 2'

� When accessing the detailed geography data, you cannot select 'sea ice' because the
sea-ice distribution is not available from those �les. All land and ocean regions can,
however, be selected because the following equivalences are recognized:

'land' = 'n ame, s ame, gre, afr, eur-asia, aus, ant, ind i'

'ocean, sea ice' =
'ame l, baf, asi l, med, n pac, s pac, n atl, s atl, ind, arc'

� The entry '{' appears in column one of the table because the region comprises two or
more subregions. For example, 'South Atlantic' selects all grid cells in either the
'South Atlantic 1' or the 'South Atlantic 2' regions (i.e., all grid cells that have
been assigned either the value 213 or the value 214 in the geography �le).

Figure 1, which follows on the next page, shows the geographical regions recognized by
EzGet. The Indo-Paci�c Islands, American Lakes, and Asian & African Lakes can also be
selected as indicated in the table, but are not labeled on the �gure.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-90

-70

-50

-30

-10

10

30

50

70

90

S. Atl. 1

Africa

N. Atl.

Med. Sea

Greenland
Baf.

N. Amer.

N. Pac.

S. Pac. 1

S. Pac. 2

S. Pac. 3

S. Atl. 2 Indian 2

Indian 1

Eurasia

Australia

N. Pac.

S. Pac. 1

Arctic

S. Amer.

Antarctica

Figure 1: Geographical regions that can be selected through EZget. The Indo-Pacific Islands,
American Lakes, and Asian & African Lakes can also be selected as indicated in Table 2, but are not
labeled on this figure.

S Pac 3

S Pac 2

