Horizontal/vertical resolution, vertical coordinates, dynamical
framework,
and the formulations of horizontal and vertical mixing used in the
oceanic
components of the CMIP coupled models. Links at the head of table
columns
connect to further explanations of information in that column.

CMIP Model |
Ocean
Resolution |
Vertical
Coordinate |
Dynamics |
Horizontal
Eddy Mixing |
Vertical
Eddy Mixing |

BMRC1 |
3.2x5.6 L12 | Z | PE/R | V=9x10^{5}, D=2.5x10^{3}: Power
et al.(1993) |
V=D=1 to 20 x 10^{-4}: Power
et al.(1993) |

CCCma |
1.8x1.8 L29 | Z | PE/R | V=1.4x10^{5}, D=2x10^{3} |
V=2x10^{-3}, D=3x10^{-5} |

CCSR |
2.8x2.8 L17 | Z | PE/R | V=2x10^{5 },^{ }D=1x10^{3} |
V=D=2 x 10^{-3} |

CERFACS1 |
2.0x2.0 L31** | Z | PE/R | V=0.2 to 4x10^{4}, D=2x10^{3}: Guilyardi&Madec(1997) |
Blanke&Delecluse(1993) |

COLA 1 |
1.5x1.5 L20* | Z | PE/R | V=D=2x10^{3} |
Pacanowski&Philander(1981) |

COLA 2 |
3.0x3.0 L20* | Z | PE/R | V=1x10^{5}, D=4x10^{3} |
Pacanowski&Philander(1981) |

CSIRO |
3.2x5.6 L21 | Z | PE/R | V=9x10^{5}; Isopycnal tracer D=1x10 ^{4}; Isopycnal thickness D=1x10^{4}:
Hirst et al.(2000) |
V=20 x 10^{-4}; D=Variable:^{ }Hirst
et al.(2000) |

ECHAM1+LSG |
4.0x4.0 L11 | Z | PE*/F | V=D=2x10^{2} |
No eddy mixing |

ECHAM3+LSG |
4.0x4.0 L11 | Z | PE*/F | V=D=2x10^{2} |
No eddy mixing |

ECHAM4+OPYC3 |
2.8x2.8 L11* | RHO | PE/F | Isopycnal V,D ~ 1x10^{3} to 1x10^{4}: Oberhuber(1993) |
Cross-isopycnal mixing: Oberhuber(1993) |

ECHAM4+HOPE-G |
2.8x2.8 L20* | Z | PE/F | V(harmonic=150)+V(biharmonic=1x10-^{3}*(dx**4/dt))+
V(local strain rate dependent) D(harmonic=1.5x10 ^{3})+D (local strain rate dependent) both with 'eddy' memory :Legutke and Maier- Reimer(1999) |
Pacanowski&Philander(1981),with
'eddy' memory enhanced m.l. mixing for unstable surface: Legutke and Maier-Reimer(1999) |

GFDL_R15_a |
4.5x3.7 L12 | Z | PE/R | V=2.5x10^{5};^{ }D=7.5x10^{2}+isopycnal
D(Z): Manabe
et al.(1991), Redi(1982) |
V=5x10^{-3}; isopycnal D(Z): Bryan&Lewis(1979)
with crossover at 2.5 km depth; at sfc: 0.3 x 10^{-4}, at
bottom:
1.3 x 10^{-4} |

GISS (Miller) |
4.0x5.0 L16 | Z | PE/R | V=4x10^{5};^{ }D(Z): Bryan&Lewis(1979) |
V=2x10^{-3 };^{ }D(Z): Bryan&Lewis(1979) |

GISS (Russell) |
4.0x5.0 L13*** | M | PEC/F | V=D=0: Russell et al.(1995) | Russell et al.(1995) |

IAP/LASG1 |
4.0x5.0 L20 | ETA | PE/F | V= 8x10^{5}, D=2x10^{3}: Zhang
et al.(1996), Yu(1997) |
V=1x10^{-4}, D=3x10^{-5} |

LMD/IPSL1 |
2.0x2.0 L31** | Z | PE/R | V=1 to 16x10^{4}, D=2x10^{3}: Braconnot
et al.(1997) |
Blanke&Delecluse(1993) |

MRI1 |
2.0x2.5 L21* | Z | PE/R | Max V=2x10^{5}, D=5x10^{3}: Tokioka
et al.(1996) |
Mellor&Yamada(1974,1982), Mellor&Durbin(1975) |

NCAR (CSM) |
2.0x2.4 L45* | Z | PE/R | V=8x10^{4}, D=8x10^{2}:
Gent&McWilliams(1990) |
Large et al.(1994), no convective adjustment |

NRL1 |
1.0x2.0 L25* | Z | PE/F | V=2x10^{3}, D=1x10^{3} |
Pacanowski&Philander(1981) |

UKMO (HadCM2) |
2.5x3.75 L20 | Z | PE/R | V=1.5 to 3x10^{5};^{ }D=40+isopycnal D(Z): Johns
et al.(1997), Redi(1982) |
Johns et al.(1997), Pacanowski&Philander(1981) |

**Ocean Resolution**:
Horizontal
and vertical resolution. The former is expressed as degrees
latitude **x** longitude, while the latter is expressed as "Lmm",
where
mm is the number of vertical levels. A ***** signifies
enhanced
horizontal resolution near the Equator, while
****** indicates that
the CMIP data are interpolated to a coarser grid than that of the
original
model data. The designation *** indicates that three directional
gradients for heat and salt are calculated in each grid box, which
effectively
enhances the resolution.

**Vertical Coordinate**:**
Z **denotes that the vertical coordinate is depth, **P** that it
is
pressure, **M** that it is mass per unit area (~ pressure under
constant
gravity), **ETA** that it is a topography-weighted depth (cf. Mesinger
and Janjic 1975), and **RHO** that it is density (i.e.,
isopycnal
coordinates).

**Dynamics**: **PE**
denotes use of the primitive equations (including the assumption of
incompressibility
and of hydrostatic and Boussinesq approximations); application of the
primitive
equations, but with neglect of momentum advection, is indicated by **PE***,
while** **use of the** **primitive equations, but with
compressible
flow and without the Boussinesq approximation, is denoted by **PEC**.
**R
**indicatesthat
the** **dynamical equations are solved assuming a "rigid-lid" upper
boundary condition, while **F** implies the assumption of a "free
surface"
condition.

**Horizontal Eddy Mixing:
**The
parameterization of horizontal mixing by sub-gridscale eddies, where **V**
denotes the horizontal viscosity coefficient (i.e., horizontal mixing
of
momentum) and **D** denotes the horizontal diffusivity coefficient
(i.e.,
horizontal mixing of heat and/or salinity); both **V** and **D**
are expressed in units of m^{2} s^{-1}. (In many ocean
models, **V** is set to an artificially high value for numerical
reasons.
V and/or D set to zero implies the use of alternative means of ensuring
satisfactory horizontal mixing, such as application of an upstream
advective
scheme.) As appropriate, a suitable reference is cited for further
details.

**Vertical Eddy Mixing: **The
parameterization of vertical mixing by sub-gridscale eddies, where V
denotes
the vertical viscosity coefficient (i.e., vertical mixing of momentum)
and D denotes the vertical diffusivity coefficient (i.e., vertical
mixing
of heat and/or salinity); both **V** and **D** are expressed in
units
of m^{2} s^{-1}. Where a more complex parameterization
than linear diffusion with constant diffusivity is employed, a suitable
reference is cited. *Note also that, in addition to eddy diffusion,
ocean
models may utilize convective adjustment and/or explicit mixed layer
schemes
as mechanisms for vertical mixing.*

Blanke, B., and P.
Delecluse,
1993: Low frequency variability of the tropical Atlantic ocean
simulated
by a general circulation model with mixed layer physics. *J. Phys.
Oceanogr*.,
**23**,
1363-1388.

Braconnot, P., O. Marti, and S.
Joussaume, 1997: Adjustment and feedbacks in a global coupled
ocean-atmosphere
model. *Climate Dyn*., **13**, 507-519.

Bryan, K., and L.J. Lewis, 1979:
A water mass model of the world ocean. *J. Geophys. Res*., **84(C5)**,
2503-2517.

Gent, P.R., and J.C.
McWilliams,
1990: Isopycnal mixing in ocean circulation models. *J. Phys.
Oceanogr*.,
**20**,
150-155.

Guilyardi, E., and G. Madec,
1997: Performance of the OPA/ARPEGE-T21 global ocean-atmosphere coupled
model. *Climate Dyn*., **13**, 149-165.

Hirst, A.C., S.P. O'Farrell, And
H.B.
Gordon, 2000: Comparison of a coupled ocean-atmosphere model with and
without
oceanic eddy-induced advection. 1. Ocean spin-up and control
integrations.
*J.
Climate*, **13**, 139-163.

Johns, T.C., R.E. Carnell, J.F.
Crossley,
J.M. Gregory, J.F.B. Mitchell, C.A. Senior, S.F.B. Tett, and R.A. Wood,
1997: The second Hadley Centre coupled ocean-atmosphere GCM: Model
description,
spinup and validation. *Climate Dyn*., **13**, 103-134.

Large, W.G., J.C. McWilliams, and
S.C.
Doney, 1994: Oceanic vertical mixing: A review and a model with a
nonlocal
boundary layer parameterization. *Rev. of Geophys*., **32**,
363-403.

Legutke, S. and E. Maier-Reimer, 1999: Climatology of the HOPE-G Global Ocean General Circulation Model. Technical report, No. 21, German Climate Computing Centre (DKRZ), Hamburg, 90 pp.

Manabe, S., R.J. Stouffer, M.J.
Spelman,
and K. Bryan, 1991: Transient responses of a coupled ocean-atmosphere
model
to gradual changes of atmospheric CO2. Part I: Annual mean response. *J.
Climate*, **4**, 785-818.

Mellor, G.L., and P.A. Durbin,
1975: The structure and dynamics of the ocean surface mixed layer. *J.
Phys. Oceanogr*., **5**, 718-728.

Mellor, G.L., and T. Yamada,
1974:
A hierarchy of turbulence closure models for planetary boundary layers.
*J.
Atmos. Sci*., **31**, 1791-1806.

Mellor, G.L., and T. Yamada,
1982:
Development of a turbulence closure model for geophysical fluid
problems.
*Rev.
Geophys. Space Phys*., **20**, 851-875.

Mesinger, F., and Z.I.
Janjic,
1975:Problems and numerical methods of the incorporation of mountains
in
atmospheric models. *Lectures in Applied Mathematics*, **22**,
81-120.

Moore, A.M., and C. J.C. Reason,
1993: The response of a global ocean general circulation model to
climatological
surface boundary conditions for temperature and salinity. *J. Phys.
Oceanog*.,
**23**,
300-328.

Oberhuber, J. M., 1993: Simulation of
the
Atlantic circulation with a coupled sea-ice-mixed layer-isopycnical
general
circulation model. Part I: model description. *J. Phys. Oceanogr*.,
**23**,
808-829.

Pacanowski, R., and
S.G.H.
Philander, 1981: Parameterization of vertical mixing in numerical
models
of tropical oceans. *J. Phys. Oceanogr*., **11**, 1443-1451.

Power, S.B., R.A. Colman, B.J. McAvaney, R.R. Dahni, A.M. Moore, and N.R. Smith, 1993: The BMRC Coupled atmosphere/ocean/sea-ice model. BMRC Research Report No. 37, Bureau of Meteorology Research Centre, Melbourne, Australia, 58 pp

Redi, M.H., 1982: Oceanic isopycnal mixing
by
coordinate rotation. *J. Phys. Oceanogr*., **12**, 1154-1158.

Russell, G.L., J.R. Miller, and D.
Rind, 1995: A coupled atmosphere-ocean model for transient climate
change
studies. *Atmos.-Ocean*, **33**, 683-730.

Tokioka, T., A. Noda, A. Kitoh, Y.
Nikaidou, S. Nakagawa, T. Motoi, S. Yukimoto, and K. Takata, 1996: A
transient
CO_{2 }experiment with the MRI CGCM: Annual mean response.
CGER's
Supercomputer Monograph Report Vol. 2, CGER-IO22-96, ISSN 1341-4356,
Center
for Global Environmntal Research, National Institute for Environmental
Studies, Environment Agency of Japan, Ibaraki, Japan, 86 pp.

Yu, Y.-Q., 1997: Design of a sea-air-ice coupling scheme and a study of numerical simulation of interdecadal oscillation of climate. Ph.D. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 130 pp. (in Chinese).

Zhang, X.-H., K.-M. Chen, Z.-Z. Jin,
W.-Y. Lin, and Y.-Q. Yu, 1996: Simulation of thermohaline circulation
with
a twenty-layer oceanic general circulation model. *Theoretical and
Applied
Climatology*, **55**, 65-88.

Return to CMIP Model Documentation Directory

Last update 2 December, 2004. For further information about CMIP model documentation, contact Tom Phillips (phillips14@llnl.gov). For further information about CMIP model data, contact Curt Covey (covey1@llnl.gov).

LLNL Disclaimers

UCRL-MI-127713